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INTRODUCTION

The radar cross section of jet engine configurations on modern

aircraft is a most perverse problem analytically. An ability to predict

the radar cross section of loaded cavity structures, even when such

structures are only very crude models of the actual engine, has been

seriously lacking. At the same time it is well known that above a

certain spectral range the engine configuration largely controls the

radar cross section of the aircraft over a large span of nose and often

stern aspects. Recently, the radar signal modulation produced by the

engines has become of important analytical concern. The research

reported in this document on the radar cross section of a loaded cavity

structure is felt therefore to answer significant needs of the Air

Force.

This techical report Is separated into two parts. Part I, 4Ray

Analysis of EM Backscatter from a Cavity Configuratiowrcontains the

major thrust of our research and basically details an asymptotic

frequency domain analysis of various loaded cavity structures. Part II,

C- 1tanonlcal Response Waveforms of Finite and Open Circular Waveguides" is

essentially a time domain analysis of the same types of problems.N Roth

Part I and Part II are self contained.'-The parts are interrelated

however- in the sense that results from one are used in the other. For .

/1
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example, Part If reproduces a portion of the exact Wiener-Hopf

computations for an open circular waveguide. These results were used to

verify a portion of the theory in Part I. Conversely, frequency

computations from the analysis in Part I are used in Part I as part of

a Fourier synthesis procedure to obtain canonical response waveforms.

It is suggested that the reader peruse Part I and Part II in that

order. Only when the real complexity of the problem is understood can

the approximations used in Part II be appreciated. Both Part I and Part

II have separate preliminary discussions and separate summaries. A

final section of this report summarizes our main accomplishments and'

makes recommendations for future research.

2



PART I

& RAY ANALYSIS OF EM BACKSCATTER

FROM A CAVITY CONFIGURATION

Ching-Chao Huang

Prabhakar H. Pathak
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SECTION 1

PRELIMINARY DISCUSSION FOR PART I

The jet inlet structure is a significant scatterer that must be

taken into account when computing the radar cross section (RCS) of

modern aircraft. While this is in general a difficult problem, it is

strongly felt that this difficulty can he substantially reduced if one

proceeds from relatively simple to more complex inlet geometries, and

develops a thorough understanding of the basic scattering mechanisms

involved in such geometries. These analyses can then be modified or

extended so that a realistic analytical model of the actual inlet (or

intake) should be obtainable. With the above view in mind, the low

frequency RCS of a simplified jet inlet configuration is analyzed in

this report. The method of analysis employed here is based on the

Uniform Geometrical Theory of Diffraction (UTD) [1] ray technique and

its modifications which are required within caustic regions, together

with the self-consistent multiple scattering method (MSM). The modifi-

cations of the UTD at caustics which are incorporated in this work

involve the use of equivalent currents and aperture integrals; it is

noted that the aperture integrals referred to here are more closely

associated with the Physical Theory of Diffraction (PTn) [24]. However,

the PrD in qeneral can be shown to be related to the Geometrical Theory

of Diffraction (GTI)) [21] and its uniform version (UTD) [1] if one

4
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(a) SIDE VIEW
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Figure 1. A simplified jet intake model.



evaluates the integrals of PTD asymptotically in the high frequency

limit. Due to the latter relationship between GTD (UTD) and PTD, it is

convenient to think of the use of equivalent currents and aperture

integrals simply as modifications of the UTD at caustics, rather than as

being a part of the PTD.

The simplified jet inlet model chosen here consists of a

semi-infinite, perfectly-conducting hollow circular pipe (or waveguide)

with a planar periodic blade structure placed within it at a distance,

1, from the open end of the pipe as illustrated in Figure 1. The axis

of the blade structure coincides with the axis of the circular pipe.

The inlet model is illuminated by an external electromagnetic plane wave

as shown in Figure 1, and the medium surrounding the inlet is assumed to

be free space. In the present case, the blade geometry in Figure I only

crudely models either the actual fan in the case of a turbo-fan type jet

engine, or the first compressor ring of blades in a conventional

(non-turbo-fan) jet engine. A second configuration which is also

considered in this work is one which contains a combination of two

planar, non-identical sets of blades extremely close together to

simulate a stator-rotor combination in which the planar stator vanes are

fixed and the planar rotor blades are allowed to turn relative to the

fixed stator. The stator-rotor jet inlet model is illustrated in Figure

2. An analysis of the RCS for the problem in Figure 2 yields an

estimate of the RCS modulation resulting from the motion of the rotor

blades relative to the stator vanes. It is noted that the stator-rotor

6
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(o) SIDE VIEW
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(b) FRONT VIEW

W, : WIDTH OF
STATOR VANE

W2: WIDTH OF
ROTOR BLADE

(C) ENLARGED FRONT VIEW

Figure 2. Geometry of a simple jet inlet-model with a planar
stator-rotor combination within. Stator and rotor
lie in the same plane for convenience of analysis.
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blade configuration of Figure 2 serves to improve the basic model of

Figure 1 because a set of stator vanes is generally present immediately

behind the fan in the case of a turbo-fan type jet engine, and they are

also generally present immediately in front of the first compressor ring

of blades in a conventional (or non-turbo fan) jet engine. Additional

problems which are also considered in this work deal with the RCS

analysis of finite length hollow circular cylinders open at the front

end, but either closed (shorted), or open at the back end as shown in

Figures 3 and 4, respectively. The solutions to the latter problems are

of interest in that they allow a useful comparison of the effect on the

RCS resulting from the scattering by the blade structure in the

configurations of Figures 1 and 2, as opposed to the short and open

terminations of Figures 3 and 4. In the present work, the RCS is of

interest for the range of angles 8 which satisfy e < 7/2; the angle e is

illustrated in Figures 1-4.

Some of the earlier published work available in the open literature

on the types of problems considered in this report is briefly reviewed.

The electromagnetic (EM) radiation from open-ended, semi-infinite

circular and rectangular waveguides was treated by Chu [21 via a

Kirchhoff approximation for the fields in the aperture at the open end.

A formally exact solution for the problems of radiation and/or

scattering from an open-ended, semi-infinite, hollow circular pipe was

obtained via the Wiener-Hopf procedure by Levine and Schwinger [31,

Jones [4], and Noble [5] for the acoustic case, and by Pearson [61 for

9



the perfectly-conducting EM case. Later Weinstein [7] treated in great

detail both, the acoustic, and EM problems of radiation and scattering

by an open-ended semi-infinite hollow circular pipe via the Weiner-Hopf

technique; furthermore, Weinstein discussed the limitations of the

Kirchhoff method for solving these problems. Subsequently Bowman [81,

Lee et al [9], Mittra et al [10], Chuang et al [11], and Johnson and

Moffatt [12] essentially dealt with improving the numerical efficiency

and accuracy of the asymptotic high frequency approximation to the

Wiener-Hopf factors given by Weinstein in his Wiener-Hopf solution for

the EM radiation and scattering from an open-ended circular waveguide

configuration. Witt and Price [13] analyzed the EM scattering by finite

length perfectly-conducting hollow circular and rectangular pipes using

a Kirchhoff type approximation. However, their procedure appears to be

incorrect because the dominant term in their solution which pertains to

the scattering by just the open front end exhibits the wrong frequency

dependence for the circular pipe geometry when compared with an accurate

asymptotic approximation of the Wiener-Hopf solution for the same

problem [12]. Moll and Seecamp [14] analyzed the RCS of an inlet

geometry modeled by an open-ended, semi-infinite hollow

perfectly-conducting circular pipe with a planar blade structure inside;

their blade model is somewhat similar, but not identical to the one

chosen in the present work (as illustrated in Figures I and 2).

However, Moll and Seecamp [14] employ the procedure of Witt and Price

[13] which appears to he incorrect as mentioned earlier; furthermore,

they include additional approximations (e.g., they neglect all TM modes

10



inside the duct) which appears to lead to additional errors. Kao [15]

presents a numerical type solution for the scattering by finite length

cylinders; however, his work is restricted to broadside incidence on the

cylinder. Finally, it may be remarked that Mittra et al [10] also

consider the effect on the RCS resulting from a uniform planar

termination inside the semi-infinite hollow circular pipe in which the

planar termination is characterized by a surface impedance type boundary

condition. Their analysis of this problem is based on combining their

Wiener-Hopf solution with the Generalized Scattering Matrix Technique

(GSMT). It is noted that the MSM based procedure employed in the

present work is essentially the same as the GSMT [16,17]. Both, the

GSMT and the self-consistent MSM allow one to account for the multiple

wave interactions between the open end of the circular pipe and the

termination (or discontinuity) placed within the circular pipe. A ray

analysis of the EM radiation from an open ended circular waveguide has

been presented by Narasimhan [18]; whereas, Felsen and Yee [19] have

performed a ray analysis of the acoustic modal reflection coefficient

associated with an open ended rigid circular pipe which is excited from

within. The ray analyses of Narasimhan [18], and Felsen and Yee [19]

will be briefly reviewed in Section 3, wherein their work will also be

compared and contrasted with the present UTD ray analysis and it's

modifications for the EM radiation and reflection from an open-ended

circular waveguide. The latter analysis is necessary in the present

development of the explicit expressions for the RCS of the geometries in

Figures 1-4.

11
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In the present work, a ray analysis based on the Uniform

Geometrical Theory of Diffraction (UTD) and its modifications is

combined with the multiple scattering method (MSM) to arrive at a very

efficient solution for evaluating the RCS of the inlet configurations in

Figures 1-4. This method of analysis will simply be abbreviated as

UTD-MSM, for convenience. Basically, the MSM allows one to

systematically take into account all interactions between the open front

end of the pipe and the termination (or discontinuity) at the back end

located a distance L from the open end as shown in Figures 1-4. In the

MSM, the wave interactions are described by "scattering matrices"

pertaining to the canonical scattering events which occur at the front

(Z=O) and back (Z=-L). These multiple interactions can be summed in a

closed form via a self-consistent procedure. The elements of the

scattering matrices in the MSM analysis are obtained here by using the

UTD and its appropriate modifications which are required within caustic

regions, and within the confluence of caustic and ray optical shadow

bounlary transition regions. It is important to note that the

conventional waveguide modal fields in the pipe region need to be

converted into a set of equivalent rays near the edge (or rim) of the

open end in order to systematically employ the UTO ray technique for

obtaining the elenents of the scattering matrices. The UTO ray analysis

provides simnpie and accurate expressions for the elements of the

scattering matrices, and hence for the scattered and diffracted fields.

The UTO analysis also provides a physical description for the scattering

processes in terms of rays.

12
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These UT based scattering matrix elements for the EM radiation and

scattering by an open-ended semi-infinite hollow circular pipe are found

to agree extremely well with those obtained from the exact Wiener-Hopf

solution for the same problem; the Wiener-Hopf solution is available in

the open literature [7,9,10,12] as mentioned earlier. This agreement

holds up even for the dominant mode regime in the circular pipe. A

distinct advantage of the UTD solution, besides being physically

appealing and accurate, is that it is far less complicated to use than

the Wiener-Hopf solution. Furthermore, the present UTD analysis can be

extended to jet intake or inlet shapes other than those which can be

analyzed by the Wiener-Hopf method. Nevertheless, the Wiener-Hopf

solution for the hollow, semi-infinite circular pipe is very useful in

that it is a formally exact solution, and it therefore provides an

fimportant check on the approximate UTD ray solution.

A general description of the self-consistent MSM formulation of the

solutions to the RCS problems shown in Figures 1-4 are described in

Section 2. The elements of the various scattering matrices required in

the MSM are obtained via the UT and its appropriate modifications in

Section 3. Several interesting numerical results based on the UTD-MSM

solutions for the problems in Figures 1-4 are then presented and

discussed in Section 4. Here, the UTD-MSM solution therefore implies

that the backscattered field or the RCS of any of the problems in

Figures 1-4 is obtained via the self-consistent MSM based formulation

which contains scattering matrices whose elements are obtained via the

UTD ray technique and its appropriate modifications. In addition, somp

13
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topics worthy of future investigation which would serve to improve the

jet inlet model of Figures 1 and 2, and to extend the present analysis

to inlet shapes other than the ones considered in Figures 1 and 2, are

also briefly discussed.

14
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SECTION 2

SELF-CONSISTENT MSM FORMULATION

As mentioned in Section 1, the method of RCS analysis of the

configurations in Figures 1-4 is based primarily on the Uniform

Geometrical Theory of Diffraction (UTD) ray technique and it's

modifications which are used in conjunction with the multiple scattering

method (MSM). In the MSM based analysis, the basic scattering

mechanisms are "isolated", and "identified" as being associated with the

scattering junctions. For example, these junctions are marked (I) and

(II) in Figures 3-5. The multiple scattering between the junctions is

calculated via a self consistent procedure. Such a procedure requires a

knowledge of the generalized scattering matrices [S11], [S12], [$21],

[$22], and [Sb] for the scattering junctions (I) and (If). These

generalized scattering matrices [16,17] are directly associated with the

canonical scattering events shown in Figures 6, 7, and 8. The

scattering matrix in microwave circuit analysis [201 arises in the

description of interior region scattering (e.g., in waveguides) and it

Is defined in terms of interior propagating modes; whereas, the

polarization scattering matrix [31,32,33] is defined for exterior region

scattering. The generalized scattering matrix discussed here extends

15
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I I
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S12 S.22

SI2
I-.-----L ---

Figure 5. Scattering junctions I and II for the geometries in
Figures 1-4.

So

S ' INCIDENT PLANE
WAVE EXCITATION

Figure 6. Canonical scattering problem for determining S11 and S2 1.
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S1 2  (n~n) h WAVEGUIDE MODE
EXCITATION

Figure 7. Canonical radiation problem for determining S12 and S2?*

Figure 8. Canonical problem for determining Sh associated with
the configuration in Figures 1-4.
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the concept of microwave circuit scattering matrix to include evanescent

modes, and to also include the polarization scattering matrix for

exterior scattering. Thus, the generalized scattering matrix is

essential for solving scattering problems which involve a coupling

between interior and exterior regioqs as in the prohlem of the

backscatter from jet inlet configurations. The elements of these

generalized scattering matrices which will hence forth be referred to

simply as the scattering matrices are defined next in the paragraphs to

follow.

Let i denote the electric field intensity of the incident

electromagnetic plane wave. Using the coordinates given in Figures 1-4,

ono may express -i as

= (e E' + * Ei) eJk(x sine + z cos e) (1)

where E0  and E are the 9 and * polarized components of i,

respectively at z=O, and k denotes the free space wave number. The unit

vectors a and z lie in the plane of incidence defined by the cylinder

ax' (z) and the incident ray direction. The unit vector 0 is

orthogonal to the plane of incidence as shown in Figures 1-4. Likewise,

iet .s denote the total far-zone backscattered electric field and Es
0

deno'e the far-zone electric field backscattered from only the open

front end (at z=O) of the configurations in Figures 1-4. One can also

express 'rs and Es in terms of their ; and * components as
0

= OE 0 ~*E5  ()

18



and

E = 6 Eo + Eo (3)

One may now describe the scatteirng matrix [S1 1]. The scattering

matrix [S11] relates the field Es to r' (at z=O) as follows.
0

F0 0 ejkR[E =E]l L']

E - -IS1(4)

where R denotes the distance from the origin to the far zone observation

point in the R direction as shown in Figures 1-4. Thus,

=SoB So]
se,1 (5)

The scattering matrix [S1 2 ] converts the circular waveguide

(intake) modal fields that are incident on the opening (at z=0) from the

region z<O into the fields radiated by these modes from the open end.

The modal electric field rg within the circular waveguide region (z<O),

i.e., within the intake region, may be represented in the usual manner

by [20] I
+ ;ja I + ;ja3 z
=n .[Anm enm e+nn + Bnm (enm Tznn)e nm, (6)

where -i'nm and enm denote the transverse (to z) electric vector mode

19



functions for the TEnm and TMnm modes, respectively. Likewise, a'
nm

and Onrn denote the propagation constants of the TEnm and TMnm modes,

respectively. As usual, n and m denote the modal indices associated

with the circumferential and radial variations of the modes (or

eigenfunctions). Also, znm denotes the z directed TMnm electric mode
+

field. The corresponding magnetic fieldl'g within the circular guide

is

+ F, a' z j ari z

Hg = Z [Anm (±;rm + rmz) n'Z + Bnm (±-nm)e ] (7)
m fl

The superscripts ± in Eqs. (6)-(7) refer to modes propagating in the ±z

direction. To be specific, let *'-enm behave as-s n(co:) in the

waveguide aperture at z=O (see Figure 1-4). Then t'.Wnm behaves as

(-Si n ; likewise o'*.nm behaves as (sin no') and o'-Wnm
cos n¢ cos '

behaves as (cos nO']. In Appendix A, a list of the circular waveguide.sin n@'

modes and also the values of ka at mode cutoffs are given in

chronological order.

Let te and denote the 0 and 0 directed components of the

electric field radiated by the waveguide fields (Tq, *Rg) after they

impinge upon the open end (z=O) from the region z<O. Then

E Ain eJkR
Er-j-[S1212x [I m  R,(8

E x r x-lg

20



where a typical subscript of the type MxN on the matrices implies M rows

and N columns, and

+
A 01

AA02

[A +A]

A+
[+ A12
[nm] 9

B+
B02

B+
12

It follows that

[s12] [Snml3 [Senm]

FS2 S----------S---S

9;01'002 11' 012---001'602 --
------------------------------ (i0)

L S' --- Ssll)02 0 ----
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The scattering matrix [S2 1] describes the transformation or

coupling of the incident plane wave field into the waveguide modes as

illustrated in Figure 6. Symbolically, [$21] is defined by the relation

[A- E ( )

L _ Xl 2 x 1

where Anm and Rnin denote the amplitudes of the TEnm and TMnm modes

transmitted into the waveguide (i.e., in the -z direction) by the

i i ; i
external plane wave field T = -0 + which is incident on the open

end of the seni-infinite circular pipe. From Eq. (11), it follows that

[S21] is given by

[s21  S r[ I Snm] (12)L [Sonm] [Sonm]
j x2

Clearly the problem of determining [S21] is the reciprocal of the
problem of determining ES12] (see Figures 6 and 7). Thus, a knowldege

of [S12]; i.e., So3nm, Scnm, Sonm, and Sonm , together with the use of

the reciprocity theorem for electromagnetic fields allows one to

calculate Sonm, S*nmg Sonm, and Snin, and to hence obtain [$21] in

terms of [S12]. In short, the elements of [S21] are simply related to

22
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the elements of [S12 ]T; here T denotes the transpose matrix operator.

The precise relation between [$21] and [$12] will be discussed in

Section 3.

The scattering matrix [S22] is a modal reflection coefficient

matrix which is associated with the interaction shown in Figure 7. In

particular, the elements of [S2 2] describe the reflection coefficients

associated with TEnm and TMnm modes reflected back from the opening (at

z=O) into the semi-infinite waveguide region (z<fO) when either a TEnm,

or a TMnm mode is incident on the open end from within the waveguide

region . The matrix [S2 2] is defined symbolically by the relation

[A-m [A+ ]nfl pqIj[s*22]

K8 x S x0 L[ + (13)

where, it is noted that [$22] can be further symbolically expressed as,

Rhh 1 heR nm;pq [R nm;pq

(S221 [Reh ] [Re . (14)

L nm;pq I nm;pq x

he
The meaning of Rnm;pq; for example, in the above equation is the

+

following. A TMpq (or e) type mode with amplitude Rpq which is incident

at the open end (z=O) is partly transformed (or coupled) into a

- he +
reflected TEnm (or h) type mode with amplitude Anm =Rnm;pq~pq.

23
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The scattering matrix [Sb], like [S2 2], is also a reflection type

matrix associated with the discontinuity at junction (2) in Figure 8.

From Eqs. (13)-(14), one may therefore write

[s] Go (15

nm -XI pq x

and

hh -he
Rnm;pq] [R nm;pql

tSbi reh II  -ee .(16)

--h e he
ir which Rnm;pq, for example, has the same meaning as Rnm;pq of

he
Eq. (14). In general, however, the values of Rnm;pq are quite different

he
from those of Rnm;pq.

At a given operating frequency, the inlet duct or waveguide region

in Figures 1-4 can support a finite number of propagating modes, and an

infinite number of evanescent (or non-propagating) modes. Consequently,

the matrices associated with [S12], [S21], [$22], and [Sb] are of

infinite order to include the infinite number of evanescent modes. It

may be remarked tnat although the matrices [S12], [S21], [S22], and [Sb]

are of infinite order in a formal sense, one needs to retain only a

finite niimber of the elements of these scattering matrices in practice

24



because the distance "L" shown in Figures 1-4 is generally large enouqh

to where the infinite number of "evanescent" waveguide modes generated

at junction (I) are not observed at junction ([I), and vice versa. The

finite number of elements retained in practice thus correspond to only

the finite number of all the propagating (non-evanescent) modes which

can exist in the waveguide or the cavity rEgion. If the distance L in

Figures 1-4 is small enough so that lower order evanscent modes become

important, then one must include these modes but still ignore all the

higher order evanescent modes in practice since their contribution must

become vanishingly small. In any case, one retains only a finite number

of elements in the scattering matrices. In the present work, "L" is

chosen such that the contribution from all the evanescent waveguide

modes can be ignored.

Referring to Figure 9, it is seen that the incident electric field

[Ei]=[E81 is scattered by junction (I) to produce a scattered field
E

[ES] in the region A, then
0

[ES] = [S,,] [Ei] e-jkR (17)
0 R

Part of the incident field which is scattered by (1) into region B

becomes incident at junction (II) from which it is subsequently

reflected; this reflected field is incident hack at (1) where it

undergoes further scattering into regions A and B, and so on, thereby

giving rise to multiple wave interactions hetween junctions (1) and (II).

The fields resulting from these multiple interactions may be expressed

in a convergent Neumann series as done by Pacp and Mittra [16];

25



REGION I REGION II I
I I

I IE I

E S E2  P E 21

ESm q I E12  SbPE -

I I

JUNCTION UIJUNCTION©

II

Figure 9. Multiple interactions between junctions (1) and (I) for
calculating the total backscattered field.
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however, an alternate prccedure based on a self-consistent method leads

directly to the same result. The latter, i.e., the self-consistent MSM

method for summing up the multiple interactions, will be used in this

analysis. Let [El] represent the net value of the field incident at

(1) from (11) after taking all the multiple interactions into

consideration. Similarly, let [E2 1] represent the net value of the

field incident at (II) from (1) after taking all the multiple

interactions into account. Then the total scattered field in region A

denoted by [Es] consists of a superposition of the field [Es], and [ES],
o m

where [Es] is the field scattered into A when [E12] is incident on (1).
m

Thus,

[Es] = [Es ] + [Es] . (18)
o m

where [Es ] may be expressed as
m

[ES] = [S1 2] [E12] e'jkR (19)

The expressions for [E12] and [E21] are given in terms of [S2 1] and

[S22] by

[E2 1] = [S2 1 ][E
i] + [S2 2][E 12] (20)

[E12] = [P][Sbl[P][E21] . (21)
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where 1Sb] is the generalized matrix corresponding to the reflection

coefficient at junction (II) as indicated earlier, and [P] is a diagonal

matrix accounting for the phase delay in the propagation path L.

Eliminating [E12] between Eqs. (20) and (21) yields

([I]-[S22][P][Sb][P]) [E2 1] = [S2 1][Ei] . (22)

where [I] is an infinite-order identity matrix. Hence, it follows that

[E211 = ([I]-[S221[P][Sb][P]) -1I[S21][Ei ]  (23)

From Eqs. (21) and (23), [E12] becomes

[E121 [P][Sb][P] (11]-CS22][P][Sb][P] - ! [S21][Ei] . (2-4)

!ncorporating Eq. (24) into (19) yields

[FsJ = [S12][P1[Sb][P] ([I]-[S22][P][Sb][P]) " 1 [S2 1 ][Ei] e-JkR
In

(25)

Finally, combining Eqs. (17) and (25) according to Eq. (18) yields the

self-consistent expression for the total scattered field [Es] as

[ES ] -- {LrSlI]+[S12][P][Sh][P]([I]-[S22][P][Sb][p])-1 [$21]} [Ei ] e-jkR.

R

(26)

In the snecial case of the geometry in Figure 4 where the field

backscattered from a hollow finite cylinder open at both ends is of

interest, an additional interaction becomes important and it must he

28



included. The latter interaction corresponds to waves coupled from the

interior waveguide region to the exterior region via diffraction at the

end z=-L, and vice versa. The fields of these interactions can also he

found via the UTD in a manner similar to that done for IS21]; this

field contribution to the backscattered field resulting from the

internal-external coupling must be added to the result in Eq. (26).

It should be observed that the latter is of little interest in terms of

jet intake configuration of Figures I and 2.

It now remains to find explicit expressions for [S11], [S12],

[$21], [S22], and [Sb] to complete the calculation in Eq. (26). These

scattering matrices are formed via the UTD ray technique as discussed

next in Section 3.

I
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SECTION 3

ANALYTICAL DEVELOPMENT OF THE ELEMENTS
OF THE SCATTERING MATRICES IN MSM

The scattering matrices [SI], [$12], [S2 1 ], [S2 2], and [Sb]

associated with the canonical scattering events shown in Figures 6-8

were defined in the previous section. In the present section, the

elements of these scattering matrices are found via the uniform

geometrical theory of diffraction (or UID) ray technique [1] and its

modificition , ac caustics. The present ray analysis is restricted so as

to be valid only in the range 6<w/2, where 0 is shown in Figures 1-4.

The reason for this restriction is that in the present work, the RCS is

of interest only for O<n/2. This analysis can of course be extended to

O>r/2; however, that extension is not reported in this work. The UT)

ray analysis is appealing because it leads to a simple localized

physical description for the scattering process in terms of rays, and it

also provides relitively simple and accurate expressions for the

scattered fields, anid hence for the scattering matrices. In order to

exploit ray wmethods systematically, the modal fields within the circular
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intake (or waveguide) region have been converted into a set of

equivalent rays, and vice versa. These scattering matrix calculations

based on the UTD and its modifications at caustics are found to agree

extremely well with those obtained from the exact Wiener-Hopf solutions

available in the open literature [7,9,10,11,12] for the problem of

diffraction of waves by a hollow semi-infinite circular pipe. This

agreement holds even for the dominant mode regime within the circular

pipe. It is noted that while the exact Wiener-Hopf solutions for the

hollow, semi-infinite circular pipe provide very valuable checks on thr

UTD solutions, they are far more complicated to use than the present UTJ

solutions. Furthermore, the present UTD analysis can be extended to

intake shapes other than those which can be analyzed via the Wiener-Hopf

method. The reflection from the blades (i.e., blade scatter) in Figure

8 is found by employing a geometric optical type of approximation for

the blade current induced by the modal fields which are excited within

the intake by the incident plane wave. This approximation for the blade

current is simple to apply, and it is expected to he reasonably accurate

for a large number of blades closely spaced together as is generally the

case in actual jet inlets. It would be worth investigating a more

rigorous representation for the blade currents in a future study. The

UTD ray analysis and its modifications at caustics which are required in

the development of the elements of the scattering matrices is described

next.

:
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A. Ray Analysis for [S11]

The scattering matrix [SII] describes the fields scattered from

only the open end (z=O) of the geometries in Figures 1-4 when these

configurations are illuminated by a plane wave. In particular, [SII]

describes the fields scattered from junction (1) corresponding to the

canonical scattering event as depicted in Figure 6 pertaining to a

hollow, semi-infinite circular pipe illuminated by an EM plane wave.

The atter prohlerm in Figure 6 can be analyzed efficiently via the UTO

ray method and its modifications which are required along ray caustics.

Consider the plane of incidence formed by the incident ray and the

cylinder axis (z-axis) and let the x-coordinate lie in this plane. This

x-z plane of incidence intersects the rim at the open end (z=O) of the

cylinder at two points denoted by QI and Q2 whose coordinates are (x=a,

y -O, z=O) and (x -a, y=O, z=O), respectively. Only 0<r/2 is

considered here for reasons mentioned earlier. According to Keller's

[21] generalization of Fermat's principle, QI and Q2 constitute the two

points of first order or single diffraction from the circular edge (rim)

of the open-ended cylinder. Additional higher-order diffracted rays

which emn'ntt fromn the curved rim after undergoing multiple diffractions

across the aperLure formed by that rim at the open front end (z=O) also

exist, and their contribution must be included in calculating the total

field ackscattered from the open front end. In general, these higher

order (or multiply) diffracted ray contributions beyond the second order

(or douhly) diffracted ray interaction may be ignored for backscattering

aspects away from the z-axis (or 0=0 direction). However, for on-axis

32
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(0=0) backscattering calculation the higher order diffracted ray

contributions can become important especially as the radius (a) of the

cylinder is decreased. It is noted that the axial (or 0=0) direction

is a caustic of the rays which are singly and multiply diffracted from

the circular rim (or edge) at the open front end (z=O) in the case of

axial backscatter.

Initially, the UTD analysis of the problem in Figure 6 will be

described for the first order or singly diffracted fields which

contribute to the backscatter. This analysis will then be followed by

an analysis of the multiply diffracted ray fields which can also

contribute to the backscatter.

(i) First Order (or Singly) Diffracted Ray Contributions to [S1 1 1

The UTD ray field Fhs1 which is singly diffracted from points 01

and Q2 on the circular rim (edge) at the open front end (z=O) is given

by [1,21]

_Jbsl bsI bsl
E = Eo + Eeo 0 . (27)

where

bsl 2 i -j2kasino -jk"

Eo = E Ds('V , ;6o) ea P(J) e ;
Oo X=1 a h /- ;sinO

(28)

0 not close to zero

and _ T (

Os(y ) - - e sec F[2k,-co()h & &o 2/-W-sin~o 2

sec ( i")FfkLcos ) (29)
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for a half plane. In Eq. (29), the "L" is an appropriate distance

parameter within the "F" function which involves a Fresnel integral;

"L" and "F" are as defined in [1]. When 2kLcos 2 (t ; 4P9)>3,

F[2kLcos2(Pt ' P)]-1; and in the following, "F" is set equal to
2

unity whenever the latter condition is true.

soft
In Eq. (28), Ds denotes {hardl edge diffraction coefficient

h
[1,20] at QZ (i.e., at Q1 and Q2 for x=1 and X=2, respectively). The

parameters qP, F, and Ro at QX for the backscatter case are defined as

ZP = 0o =T/2 . (30)

where 'P+'i or P2 as in Figure 10. The angle et is defined as

-0, if X=1 (i.e., for ray diffracted at QI)
ok ={ (31)

0, if t=2 (i.e., for ray diffracted at Q2)

The factor Pk(j) is defined by

1, when an edge diffracted ray from Qx(x=l, or 2) does

J' not cross the axial caustic (z-axis)
PZ(j) = (32)

L j, when an edge diffracted ray from QZ(Z=I, or 2) crosses

the axial caustic (z-axis)

The factor PX(J) is required since the cylinder axis is a caustic of the

rays diffracted from the circular edge (at z4O). Upon crossing such a

caustic, the phase associated with that diffracted ray undergoes a jump

of + i/2 radians which is properly taken into account via the factor j

appearing in the RHS of Eq. (32). The quantity R in Eq. (28) denotes

the usual distance from 0 to the far zone observation point in the R

direction. From Eq. (28), Fqs. (4)-(5), and the explicit form of Os in
h
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Figure 10. Geometry of rays diffracted from points Qi and Q2 on
the edge.

za

x

Figure 11. Aperture and rim coordinates at z=0.
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[1,21], it readily follows that, for a unit amplitude plane wave

incident on junction (1),

S a I ) 2 cos(2kasine6-f) 04, (33)00 cos / i7tkasine ; '

and

S a -a + ) 2 cos(2kasine- ) eo , (34)
0 7 cos-J- u2kasin 0 T

Near the caustic direction (0.0), Eq. (28), and hence Eqs. (33)-(34)

break down. A uniform asymptotic approximation for See and S € which is

valid near and at 0=0 may be obtained via the method of "equivalent"

edge currents which indirectly make use of Ds as indicated in [22].
h

The equivalent electric and magnetic edge currents 11 and M1,

respectively are positioned on the circular edge or the rim at the open

end (z=0) of the semi-infinite cylinder, and they are given by [22]

11) -Ys19;n.') . (35)

0 T sinao rim

and

MI€) = , , Dh(,''o R ., (36)
-o sino rim

where €' is the unit tangent vector to the circular edge or rim (at z=O)

in the usual cylindrical coordinates at 0', and , , 6 and

0 0
)r ' change as a function of position on the rim. The coordinates

of any point on the rim are (p'=a, 0', z'=0); the primes denote the

source coordinates associated with the equivalent sources 11 and M1.
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The quantities * and 4' in Ds are interpreted as the usual projected
h

incident and diffracted ray angles which are obtained hy projecting the

incident and diffracted rays on the rim, and V o is the acute angle

between the incident ray and the edge tangent 4'. The incident magnetic

field I is related to P via TPi=-YoRxV in which Zo is the free space

impedance, and Yo=(Zo)-l. When the above equivalent currents are

incorporated into the usual radiation integrals, one obtains the fields

radiated by these currents as

_sl 2n -R -,kRE JkZ [ f d4'a(R x x I + Y x M jk R] e- .,
1 0 R R

(37)

where k denotes the free space wave number and p'=a p'. The quantities

*', ',,p and R are shown in Figure 11.

For ka sin B>>1, Eq. (37) can be evaluated asymptotically via the

method of stationary phase. This procedure yields the stationary points

to be at QI and Q2 on the rim (see Figure 10), and the corresponding

stationary phase solution agrees exactly with Eq. (28), as it should.

While the integral in Eq. (37) can be evaluated exactly in closed form

only for 0=0, it can be evaluated approximately but accurately in

closed form for 0 small as follows,

As a first step in the approximate evaluation of the integral in

Eq. (37) for 0 small, one may fix the Dls in I and Oh in MI to their

values close to the caustic direction (0=0) because, the diffraction

coefficients Ds  are slowly varying with respect to 0. Thus, for very
h

small, the integral in Eq. (37) is given approximately by
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_s1 -jkR 27 r j2kasincos$
E .jk 8Ta ID (O--)fd'[Rxix;')(EFcos€-E'cosOsin¢')]e

2i7 j2kasin6cos¢'

- Dh fd'(^Rx E . (38)

The above integral can now be evaluated in closed form to yield

11

bsl EIj -jkR
E ° = _Ei(6' e a){fl(e=O)J(2kasinO)_D (e=O)cos 2o dl(2kasine)} e

0 h(OOj s 2kasinO 7_W

(39)

bsl jA2*, -jkR
E = E'(--k e a){D (0O)d(2kasine)+Dh(O=O)cos2o d_(2kasine)} e

s h(2kasine 7

(40)

It is clear that the above result which is valid at and near the caustic,

i.e., for 0 at and near zero can blend into the two-point result of Eq.

(28) which is valid for e not close to zero (i.e., far from the caustic

direction) if the Ds(0=O) in the above result for small 0 is now allowed to
h

be a function of 0. Thus, one may heuristically replace Ds(0-0) in Eqs.
h

(39)-(40) by Ds(O) to yield
h

Eb° EO {(--s) Il(2kas in O)-( l - s )cOs2 0 J(2kasinO)} e1 kR

Co is 2kasin G

(41)
and

bsl -jkR
E .7-F a I l.) j(2kasinO)+(1.- )Cos2 dl(2kasino).

coso coso 2kdsino
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bs I
The above result for EIo corresponding to the singly diffracted

00

contribution to the backscattered electric field is now valid for 0

bsl
small and large. Thus, Eto in Eqs. (41)-(42) is "uniform" in the sense

that it remains valid at and near the caustic where the ordinary ray

solution of Eq. (28) fails, and it reduces uniformly to Eq. (28) far

from the caustic where the latter expression is indeed valid and

accurate. Furthermore, it can be shown to remain quite accurate even

for intermediate values of 0 by comparing it with the exact Wiener-Hopf

solution when only the first order terms are retained in the asymptotic

approximation of the latter solution.

For ka small, higher order (or multiply) diffracted rays can

contribute significantly to the backscatter from the open front end.

The expressions for these higher order diffracted field contributions

are discussed next.

(ii) Higher Order (or Multiply) Diffracted Ray Contributions to [S1 1]

Let Eb s m denote the electric field associated with the rays

backscattered from just the open front end (at z=O) after undergoing

multiple diffractions across the aperture corresponding to the open

front end. It is convenient to express .Ib sm as

Ebsm = E b s m  + E s' b (43)

In determining rhsm for backscatter directions which are not close to

the axial (6=0) direction, only the doubly diffracted ray contributions
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need to be included for accuracy when ka is not sufficiently large,

because the contribution from all the other higher order multiply

diffracted rays in general becomes sufficiently weak in this case as to

be ignorable. It is noted that m=2 in the doubly diffracted ray

contribution to -Ebsm, i.e., .Ts2 is the doubly diffracted ray

contribution to Eb s'n. If ka is sufficiently large, then even the doubly

diffracted ray contributions become insignificant in comparison to the

singly diffracted ray contributions for the off-axis (or 0 not close to

zero) backscatter directions. It is noted that the entire rim

contributes to the diffraction at axial backscatter in contrast to just

a few isolated points of diffraction on the rim which contribute to the

hackscatter in the off-axis case, because in the case of on-axis

illumination the cylinder axis (0=0) is a caustic of the rays diffracted

by the rim. Consequently, an equivalent rim current solution must be

ohtained for 0 at and near zero in order to express "bs2 at and close to

the axial caustic as done for the first order or singly diffracted

contribution -1s! near the caustic. The equivalent current caustic

solution for EIs2 will be shown to generally yield numerical values

which are approximately the same as those obtained from the off-axis

solution for -bs2 (which is based on a few isolated points of

diffraction on the rim) in their common domain of overlap in 0. Thus

one could switch from the caustic solution to the off-axis solution for

Ebs2 in their domain of overlap. For the special case on axis (0=0), a

separate solution for .- sl is also provided (in addition to the caustic

solution for 1-b;2 mentioned earlier) which includes not only doubly, but
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also triply and all the higher-order diffracted rays. The latter

solution "rbsm for e=O which is admittedly more accurate than the caustic

solution for -Ebs 2 at 0=0, especially when ka is not sufficiently large,

is also more cumbersome to use in practical applications. Furthermore,

even when ka is not sufficiently large, Tbs 2 is usually within one or

two dBs of the value predicted by "bsmn. Consequently, in the MSM based

analysis for the problem configurations in Figures 1-4, only the second

order Ebs2 solution will be employed for both, 0 near and far from zero

to yield the higher-order diffraction contributions to the total

backscattered field -bsm .

In the off-axis backscatter case, it is seen via Figure 12 that in

general, a set of four rays contribute to the hackscattered field after

undergoing double diffraction. The total doubly diffracted

backscattered field contribution can be expressed as

bs2 il2r i2lr i34r i43r
E0 = E + E + E + E (44)

90 a 0 0 0

where the superscript, i-1-2-r, for instance, denotes that the incilent

field (-i-) is diffracted from point QI(-l-) to Q2(-2-), and then to

the far field (-r-), and vice versa. It is found that points Q3 and

Q4 are symmetrically located with respect to the xz-plane, and the

cylindrical coordinates of Q3 (p=a, P=3' z=O), and Q4 (p=a, "4'

z=O) are obtained by letting
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i . e = d e3 (45)3

d.e 4 
= -i . e4 . (46)

to satisfy the generalized Fermat's principle at points Q3 and Q4.

Here, i and d are the unit vectors of the incident direction and the

diffracted ray direction across the aperture. e3 and e4  are the unit

edge vectors at Q3 and Q4, respectively. i, d, e3, and e4 are given by

=-x sin - z cos . (47)

d= xcos a + y sinci . (48)

e3 = -x sin ¢3 + y cos $3 " (49)

e4 = -x sin 04 + y cos $4 . (50)

and,

tan sin $4 - sin 03 (51)
cos $ - cos 3

Thus, by substituting Eqs. (47)-(51) into Eqs. (45)-(46), one obtains

= 7 + tan-l(sin ) . (52)

and 4 = -¢3 " (53)

It can be shown that

il2r i21r 134r i43r
EO E$ ; E E$ (54)
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which is to be expected from reciprocity. Therefore, Eq. (44) becomes

bs2 il2r i34r
Eo 2 Eo, + 2 Ft (55)

60 0 0

where

il2r i -j2ka cos 2 0 -jkR
E = E ~e e (56)

42 iwTkasin9 5os2 R_

i l2r I -j2ka si n2 -jkR
E = E a e 2 e .(57)

E i34 , rE i(D? 2in 2 01 2 cs2 Oj2kasincoso 3 i e-jks r e -jkR
S S 013 4+s) T

(58)

i4=Ei(0 sin 2 O 2 Cs2 Oej2kasin cos ~1 +se)j

(59)

and,
ijT

Ds = e E/nsn~' [e~ ) ±sec (60a)
h o

s in0 so' n~ ta- si~ (60b)

S /si2 (60c)

44



( p=0,4P=vz=O)

Figre 3. he ouly iffactd ry oequvitcuet

*1 sluton. ere 3' s nt ncessril equ~ t(()

x A5

d S

1C



P ______ i3 P 34r = -a 1i-2sin2 9 1O i 2 6-'3/2 (60d)
(l+sin 2o)3/2  2sin2 a

Near the caustic region (0+0), Eqs. (56)-(59) break down and the

equivalent cuirrent formulation is employed to correct the results as

follows. Let (a, ', 0) and (a, v', 0) be the cylindrical coordinates

of the first and second diffraction points on the rimn as illustrated in

Figure 13. To satisfy the generalized Fermat's principle at point (1),

it can be found that

d =x cos a +y sin a~ (61)

where

a = w + - sin 4I (sinosino') .(62)

rhus, v' and *'are related by

1! = W~ + 2sin-I (sin3sin4 ') .(63)

which is illustrated in Figure 14. The doubly diffracted field in the

backscatter direction can be expressed in terms of the equivalent

current form as

-bs2 jkZjkp.R -jkR
Eb0 [f dv' a(RxRxI v' + Y RxM v')e ]e . (64)

where

I 2(v') -Y J D', ' (E -2 V) ri in (65)
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M2 (V' -Z 0o .~ IN0 (H 112r- n (66)

and

4, i ,u~ni + tan 1I(tan 8 cos v') ;(67a)

sis isinano sins0  1 sin2 6sin 2 v' (67b)

v' -x sin v' + y cos v' ;(67c)

RxRxv' =-OcosOsin(4-v') - cos( -v') ,(67d)

Rxv' -Ocos(4-v') + *cososin(o-v') ,(67e)

with 8 = xcosE3 - zsinO, *=y and *=o in this case.

-Ei12 and 11112 are the electric and magnetic fields incident at the

second diffraction point (2), after being diffracted from point (1).

-E!12 and -H!12 can he evaluated via rl] as follows.

E2 E~( E + E, 11 (68)
0

iiU H H + H il? (69)

where
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a0 x sin y -y cos y

4 z (70a)

and

y w i + *'-sin-I(sinesin,') *(70b)

i12 i2

Since v' 4 =0, one only needs to evaluate Eo and H5 Thus, one

obtains [I]

i12 1 -____ (71)E -E D p e
0 0 a0  s F p+ s

H i12  H Dh /: js(2
0 = 0 h __ _ (72)

where

E' [E' sin ' cos 5 - El (sine sinS + cos4,' cose o6 iaioo
0

(73a)

and

H' [H1 OnI cos 6 -H1  (sine sin6 cos ' cose cosS)e jkasinftos

0 (7 3b)

with
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tan 6 . sin 0 cos 0' . (74)
cos 0

Also,

p = a sin 2 so (75a)
sin 6 cos 0' - sin 1o

and

s = 2a sin o• (75b)

The Ds in Eqs. (71)-(72) is given by
h

-T

ls-e Isc(A L) sec ,___ (76a)
h 2/2i sin a "

with

= + tan 1 I (sinOcoso') , it (76b)
coso

sin ° = 1 - sin e sin 2 (76c)

It is noted that the integrations in Eq. (64) can be carried out

numerically only for 0<300. When 0>300, a complication arises in that

more than one singly diffracted ray can strike the second diffraction

point (2) as may be readily seen from Figure 14. In the equivalent

current solution, this proximity of the ray fields at Lhe point (2)

leads to a singular result. On the other hand, 8>300 is usually a

sufficient condition to meet the criterion ka sin 0>1, so that the
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equivalent current solution of Eq. (64) asymptotically reduces to the

four-point result in Eqs. (56)-(59) which is valid far from the axis

(at 0=0). Furthermore, the four point doubly diffracted ray

contribution remains bounded and accurate even in the case for which thp

equivalent current solution becomes sinqular. Thus, in practical

computations, it is recommended that the equivalent current solution for

Ebs2 which remains valid at and near the axial caustic (at 0=0) be

switched to the off-axis 4-point solution for Tbs2 whenever 0>30'.

Although the doubly diffracted ray contribution to the

backscattered electric field Ebs2 has been evaluated above for both, the

off-axis or 0*0 case and also for the paraxial case where 9 is at or

close to zero (and 0=0 is the caustic direction), a separate

solution will also be obtained below for the general mth-order multiply

diffracted field'Ebsm in the special case of on-axis incidence (i.e.,

axial backscatter) as mentioned above. The reason for developing an

expression for Ebsm for the special case of axial (0=0) backscatter is

that it would enable one to estimate the importance of the triple and

higher order multiple diffraction effects which are riot present in the

expression for the doubly diffracted field E s  will e developed

below only for the case of axial (0=0) backscatter because it is

tractable in this case. Such an mth-order result for Fbsm which would

be valid for the off-axis (or 0*0) case cannot be obtained in any

tractable fashion. Furthermore, multiple diffraction effects beyond the

doubly diffracted ones are in general quite weak for the off-axis (or

5
i51



040) case and hence there is, in general, no need to consider the

mth-order solution (for mi>2) in the latter case.

The general mth-order solution [bs'f for the e=0 (axial

backscatter) case will be constructed in terms of the previously

described equivalent rim current concept as follows. First the singly

diffracted contribution -'sl(0=O) will be listed to be followed by the

expressions which will be developed for the doubly and the triply

diffracted contributions Tbs2(6=O) and ns 3 (o=o). A sequence will

then be shown to emerge from Tbsl(:O=), h-bS2(o=O), and Tbs3(0=0)

which can be directly generalized to Tbs4(o=o), is5(0=0), etc., and

hence to EbS1 1(O=O) via the process of induction. One begins with the

first-order (or singly diffracted) contribution EYS 1 (0=O) which is

developed as follows. Referring to Figure 15, the incident field is

given for the case of axial incidence by

= _ x Eo ejkz (77)

Since -, in Eqs. (35)-(36), only the equivalent electric current

contributes to the axially backscattered field; i.e., the equivalent

magnetic current gives a vanishing contribution. Thus, as in Eq. (37),

jkZ 0  -jkR 2n jk-'*R A

F-b (lO) = j . f e (RxRxl *')ad' (78)

0 1

Wi th
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Figure 15. On-axis backscattering from the open end of a
setni-infinite conducting hollow pipe.
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= a(x cos ,F + y sin *') (79)

-x Sin q' + y Cos '

It follows that

bsl-jkR 2 -

bS( ) jkZo) e f (xsin' - ycosO') I d' . (80)T R 0 1

where

= I _ ____- (i,_  TT) . 87r e
Ic~IT

S. -sin 0' at z2O
kzO

Thus, one obtains

_bs1 -jkR
E ( x=0) E . a. e when 0=0 * (82)

Fris result ch#'ck,; with that in Eqs. (41)-(42), as it should, when the

latter is specialized to ()=0.
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One can extend the above approach to obtain the axially

backscattered field due to the 2nd-order (or doubly diffracted) ray

interaction as

-bs2-jkR 2Ry
E (oO) ka . Z . e f (x sin 4'-yco-; I' 1d4'

Tr~ 0 R 0

in wihich only the equivalent electric current 12 is non-zero (the

equivalent magnetic current contribution vanishes again). Specifically,

I?~ 8 gE 4 r TL e4 (84)
S8 k

and

E O'o- sn -,(*'P e-2jka

2 = [a~o +2a)

p -a .(5

Therefore,

-(?ka +IT)
I2 =- -sin ~ 1 * e - W .(86)

2 kZ0  7-k

By comparing 12 in Eq. (.36) with 11 in Eq. (81), one can readily obtain

Fbs2 (0=0) = u 2  F~bs1 (0=0) * (S7)

where u2 is given by
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-j(?ka (U e4 (88)

Likewise, one may obtain the axially backscattered field "Tbs3(8=0) due

to the 3rd-order (or triply diffracted) ray interaction via the

equivalent current concept as

-jkR 2n
-bS3 (0=0) .ka . e f (x sin ' - y cos () 8 9T o R 0o

(89)

13 (3' , tp,= i) • 87r e at z=O (90)Zo 7 "1_

As shown in Figure 16, it is noted that the ray singly diffracted from

any point on the rim (edge) traverses across the aperture to be

diffracted again from a diametrically opposite point on the rim, thereby

producing a doubly diffracted ray. Likewise, the doubly diffracted ray

wnich traverses the aperture can in turn be diffracted once again from a

diametrically opposite point on the edge to produce the triply

diffracted ray, and so on. Now, the doubly diffracted ray which

traverses the aperture (to produce the triply diffracted ray) will lie

on the reflection shadow boundary of the singly diffracted ray (which

produce~s the doubly diffracted ray). Due to the fact that the doubly

diffracted ray lies on the reflection shadow boundary, the field

associated with that doubly diffracted ray in the aperture is non-ray

rjI)t-ical. Thus, one cannot use the edge diffraction coefficient which is
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(a)

(b)

Figure 16. Mechanisms of the scattering froin the open
end of a semi-infinite conducting hollow pipe.
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valid only for an incident ray optical field to directly calculate the

field of the triply diffracted ray. However, it is possible in this

special case to decompose the non-ray optical doubly diffracted field in

the aperture into two distinct ray optical components. The diffraction

of each of these two ray optical components can then be directly

calculated using the edge diffraction coefficient which is valid only

for a ray optical incident field. Let the two ray optical components of

the non-ray optical doubly diffracted ray field along the aperture
ii

(i.e., along the reflection boundary), be denoted by F31, and T3 ,2 ,

respectively when the field is evaluated in the limit as the observation

point moves to the aperture from the shadowed side of the reflection

boundary. Let the total original non-ray optical field be denoted by

E3 • ITus,

r3ilim = E3 ,1 + T3 , 2  • (91)

from shadow side

If the limit of the total non-ray optical field value E3 in the

aperture was evaluated from the lit side of the reflection boundary, one

wou~ld obtain

T3Ilin =3,1 E3,2 + E (92)
from lit side

4(go)i
where i

3 is the geometrical optics field "reflected" from the edge

illuminated by the singly diffracted field in the aperture. This term

must be included in the total field calculation since it is non-zero on

the lit side of its reflection boundary. Furthermore, it can be shown

that
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2 1 3 (go)i 93

so that

=E3  ) z E3  •(94)
3'lim from lim from

shadow side lit side

as expected since the field in the aperture after the second interaction

must be continuous across the aperture. The ray optical components
i _i

'3,1 and E3 ,2 are explicitly given by

-i _i i -j2ka

E3 ,1 : E2 Ds  a7p 2a e (9)

and

_i r r -j2ka

(-1) P1 (P2 e (96)
3, 2  2 - (p-+2a)(pr+ 2a)

with

r r

Here p is obtained by [1] to yield pz-a. PI and P2 are the two

principal radii of curvature of the reflected wavefront associated with

E(go)i. they are given as follows [1].

3
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1 2 +1 . (98)
pr rC cos 8

1  X

and

1 2 cosi+ 1 . (99)
r 1 '

rc

where r and r are the two principal radii of curvature on the surface.
i c

-, this case, 0 i0, rc=-a, rc= , 1,=a, and 22=2a. Consequently,

Pr -a ; r2 2a • (100)

One thus obtains

E3 = u3 E2  . (101)

where E2 is as in Eq. (85) and u3 is given by

-j 2 k a + " 1____ _( +e-T (102)
20 -ir a~(+

[u&j, to the similarities in the expressions between 12 and 13 (see

i-qs. (84) and (90)), one readily obtains

E (s3 0 = I0 3 0s 2(6=0) . (103)
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Combining Eqs. (82), (87), and (103), one can obtain the on-axis

backscattered field o(O=O) up to and including the triply diffracted

rays as follows.

3 (e=) -jkR

(9~=0)= E a e- R j1u(~ 3f(1)
Som=l 0 7 R-

Therefore, from Eqs. (4) and (104),

see = = = a l+u2(+u3) (15)

or, equivalently, the on-axis RCS from the open end of a semi-infinite,

perfectly-conducting circular pipe is given by

a I=o = a2  1 1 + u2(1 + u3) 1 2 (106)

The above results for "Cbsl(9=0), Fbs2(0=O), and F_-h3(O--O) can he

extended to obtain the mth-order diffracted ray contribution to the

axial backscattered field F as
O

--bs O) sin-jk  2o )
E (0=0) jka z e f s cos ')I d+'

TF 0 R 0 y (107)

and

at

.i' Im  0' _T 
I  andl_> " l.
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where Ti is obtained by generalizing the procedure used in obtaining

F3 of Eq. (94). Each successive bounce (or diffraction) of a ray

optical field component in the aperture gives rise to a non-ray optical

field which in turn can be decomposed into two ray optical components as

in Eq. (91). Furthermore, each of the latter two ray optical components

generates two additional ray optical field components upon diffraction,

and so on. Finally, as shown in Appendix B, the total on-axis

backscattered field which includes all m multiple interactions, where

m--, is found to be

__s __bsm -jkR
E (O=O)= I E (0=0) _x E a e C (109)

0 M= 1 0 Tu

where

-j(2ka - it)

A e (110)
4 / --F

C= I+ (j,)n (111)

and

-j2ka(12B =- 1 e . (112)

Also, the on-axis RCS of the open front end (z=0) is obtained from

Eq. (109) as
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a e=O 2 i + u22  (113)

Numerical results for the off-axis RCS (normalized to fa 2 ) of just

the rim, or the open front end (at z=O) of the configurations in Figures

1-4, is illustrated in Figures 17-18 as a function of 0 for fixed

values of ka. These calculations are based on Eqs. (41)-(42),

(55)-(59), and (64)-(76). It is noted that the RCS components og and

c€¢ in these figures are defined by

0 lim 4R 2  E601 _= 4 IS 9012 (114)

and

a lim 4nR2 IE 1 = 41 s 12 (115)

with

s bsl bs2
E o Eo + Eo (116)
90 oo 60

Some of these results are compared with corresponding results based on

the exact Wiener-Hopf solution in Figure 13. The agreement between

these two independent results is seen to be good. likewise, numerical

results for the on-axis RCS are shown in Figure 19, as a function of

a/A (X is the wavelength). A result based on the Wiener-Hopf solution
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Figure 13. Off-axi,; RCS (normalized to ira?) of a semi-infinite,
hollow, perfectly conducting circular cylinder with
ka-14.4. The equivalent current technique is employed
for 0<30 in UT) calculations.
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Figure 1M. (continued)

67



II 1s'-ORDER UTO

0.00 0.25 0.50 0.75 1.00 1.25 1.50

a /X

(a ) 1st-order

12n -ORDER UTI)

C

0. 00 C. 25 0.50 0.75 1.00 ).25 1.50
a /

(b) 2nd-order

Fiqjure 19. 0r)-1xis bdckscdttered RCS (normalized to 'ra2) fromn a
s(!-n1-infinite, hollow, perfectly-conducting circular
cyl inder with various terms included in UTU
cal culiat ions.

* 6.r



3 rd ORDER UTD

~c

0.00 0.25 0.50 0.75 1.00 1.25 1.50

(c) 3rd-order

0T

/o WIENER- HOPF
Ia 'I JOHNSON. WPAFB)

( ~ MOFFAT, OSU

C3 0

w

0.00 0.25 0.50 0.75 1.00 1.25 1.50

(d) all interaction terms included

Figure 19. (continued)
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for the on-axis illumination is also compared with the present on-axis

solution which includes multiply diffracted rays of all orders (see Eq.

(113)). Again the agreement hetween the two solutons is seen to be

good. It is possible that the inclusion of slope diffraction effects on

the multiply diffracted fields could improve the accuracy of the present

solution for smaller ka even further in the case of on-axis

illumination.

B. Ray Analysis for [S1 2 ]

The elements of the scattering matrix [$12] describe the manner in

which the modal fields propagating within the waveguide region radiate

into the exterior free space region from the open front end (at z=O) of

the semi-infinite circular pipe (waveguide), as depicted in Figure 7.

The elements of [S12] are found here via the UT) together with its

modifications which are required within caustic regions. However, in

order to use the UTD ray technique systematically in this case, it is

necessary to convert each propagating waveguide modal field into an

equivalent ray optical field at the rim (edge) associated with the open

front end (at z=O). This procedure is in contrast to the UTD ray

technique employed by Narasimhan [18] for analyzing the same problem as

the one being considered in the present UTD ray analysis of [S12].

Narasimhan (18] does not convert his waveguide modal field into an

equivalent ray optical field in his UTD analysis. Consequently, the

UTD, which requires that the edge diffraction coefficient be employed

only for a "ray-optical" incident field, cannot be strictly applied to a
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"modal" field incident at the edge (or rim). On the other hand, it

appears that if the propagation constant of a mode? approaches the free

space wave number, as is the case for a mode which is very far from

cutoff, then the modal field behaves almost like a ray optical field and

Narasimhan's [18] procedure may work reasonably well in that case.

However, Narasimhan's [18] procedure is expected to become inaccurate

for a mode even moderately near cutoff; whereas, the present IJT)

procedure which is described below will not suffer from the limitation

present in Narasimhan's procedure [18].

Table 1 indicates the various electric and magnetic field

components for the TEnm and TMnm modes in a circular waveguide. The

propagation constants of the TEnm and the TMnm modes are given by

Onm = /k2 - (Pnm)2 and Onm = 4 2 - (Pnm 2, respectively. Consider a
a a

typical modal field component whose p and z variation is given by

r {Pnm for TEnn modenm Pnm for TMnn mode

{'nm for TEnm mode

Tnm nm for TMnm mode

M(21)One may decompose J n(nm p) in Eq. (117) as Jn(x) = (x) + Hn)(x)

thus, Eq. (117) becomes

-jnll H2)( -j ninI z I HM~ ) FnmP) -JYnm( zl

"( p)e n (  m) e + n (F e
n n n 2
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TABLE 1

PROPERTIES OF MODES IN CIRCULAR WAVEGUIflES

TE modes TM modes

ii N'K12 j (PnrnP nCoSf 0

h~j z jN (PflflP nCOS nnpi)snn

h~~~~ N'i~P frnmon n'(fol) CSn

0nmn n a Isin fc e n o

h in__ Pr~j{snn

p hn nm a a sin no l4,)r

h ti h N,5~ 0~ 3 m (PPnmP) f-.Sif nfl4
hnn nm n cos n

hpn hn nma nsnn

eI in hN nn (np Isnn

Ze,nm "i
k 0

K Pinrn
nil

72



TABLE 1

(CONTINUED)

TE modes TM modes

rimi

N 2
nm rm '(pni) flrW eon

rm ri'nmo

The normalization factors Nnm and Nnm yield unit power in each mode.

Here, con 2 for ni 0, and 1 for n > 0.
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(1)

From the large argument asymptotic form of H(2 )( niP) and for real
n

Yn, it is easily verified that the first term in Eq. (118) containing

n rn MP) represents a conical wavefront propagating away from the

guide center, (i.e., away from the guide axis) as shown in Figure 20;

whereas, the second term which contains H 1)(CnmP) is a conical

wavefront (also for real Ynm) propagating toward the guide center (or

collapsing on the guide axis). Clearly, the field of the conical wave

wiich propagates away from the guide axis, i.e., which propagates toward

the rim at the open front end (at z=O), constitutes the ray optical field

which is incident at the rim (edge). This incident field undergoes

diffraction at. the circular edge and thus contributes to the field

rddiated into the exterior region by the modal field within the

wiveguile. Far from the waveguide axis (0=0), one may use the UTI) to

calculdt.e the field radiated from the open end in terms of the two

diffract.ed rays shown in Figure 21. In accordance with the generalized

Fermat's principle, these two rays originate at the two points of

diffraction on the circular rim (at z=O) which correspond to the

intersection of the rim with the plane defined by the far zone

o0servation point and the axis of the open-ended circular waveguide.

Thn first *rder, or the singly diffracted field associated with the two

rays diffracted from the rim is directly produced by the incident ray

optical field which is incident there. A part of this singly diffracted

field also initiates multiply diffracted rays which bounce hack and

forth across the aperture; at each hounce, a part of the energy is

aclain radiated to the far zone observation point along the
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Figure 20. Conversion of wavegulde modal field into the
conical ray field.
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SnrnOR ~m

Figure 21. Diffraction from the rim of the perfectly conducting
circular waveguiie by an incident conical ray field.
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aforementioned same two ray paths after being multiply diffracted from

the same two points of diffraction on the rim. The latter contribution

to the radiation field which results from the multiply diffracted rays

may be included for improved accuracy when ka is not sufficiently large.

If ka is sufficiently large, then the field of only the singly

diffracted rays remains significant; thus, the singly diffracted fields

are the dominant contributors to the far zone radiated fields, when 8

is not close to zero. The UTO electric field 7Twhich is associated

with these two singly diffracted rays is given by

E0  + E for TE modes(1)

+- E for TM modes

Here,

r' (2)' F 0 Snm1
E ~jn+2 A+- kZ P' H (P' (N cossinF

nm o nan n nm)(jnm) COS65 j-coso

(cosn l) 2 sin(kasinO - nit- t ek
sinn Fra sin 0T R (120)

.INote that H (2)' (P )=-jY (P)--jJ (P )since J )= forn nim n rim) in n (nn

TErim modes.};

re n4-2 + e nm]
E A + n H(?') (P' nkZ N'1 cos6 s i n" c os-y-

n nm o im rimCos e-cos S'Lnin (121)

COsin rksit cos(kasino - n t)ejk
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(Note that Hn2  nil ). J n(Pn) in this case.1;

r n+2 0 6nm
E' n kPnmS7 -T

E0  n nm n2 ( cos n(3CO -cos 6n( 22
(122)

-COSin s - - jkR
Scos(kasino

sInn(' T- R

INote that H(2)' (Pn)n(Pnm in this. case. 1;

r n,2 (2) F 0 6i

[ j &n n3nm In (P MN )(jN2n) cO-°-'-=- 2
L nni 

(123)

e-jkR
.(-sinr) . -- sin(kasinO" n,.] e7
cosV 'asinO -" R

{Note that H( ")(Pnin -'Y, (PnmJ n(Pn) in this case.1;

where the terms within the square brackets in Fqs. (120)-(123) are the

UTO edge diffraction coefficients multiplied by a constant; in

particular,

cs__ _ s - I W 6; Tr (124a)

and

F o 1,

s sin-7 cos~-7 I;'' (124b)
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with

= cos 1 / k) for TE nmodesS nm nin {

6' = cos-1(anm/k) for TM modes
nm nii

It is noted that the half cone angles of the conical wavefront

associated with the rays incident on the rim (at z=O) as shown in

Figures 20-21 are denoted by 6nm and 6nm for the TEnm and the TMnm

modes, respectively. These angles 6nmn and 6nn appear in

Eqs. (120)-(123). Note that 0=t 6nm or 6nm} corresponds to the

incident and reflected shadow boundary directions associated with the

incident conical wa ,e at the edge as shown in Figure 20. The above

Eqs. (120)-(123) are presented for 2kLcos 2 -- )>3 where L=a/sin6.

Consequently, these equations need to be modified if 0+6nm or 6 1n1

by including the "F" functions in Ds as indicated in Eq. (29). Since

0=0 is a caustic direction for the diffracted rays, the two point first

order diffraction solution for the radiated fields in Eqs. (120)-(123)

becomes singular at 0=0 and therefore cannot be employed at and near

that direction. The equivalent ring current concept used previously for

evaluating the fields near the caustic direction (0=0) cannot be

employed in this case because the incident conical wavefront which

undergoes diffraction at the rim edge (at z=O) gives rise to a

non-cylindrical wavefront in the immediate vicinity of that edge. It is

noted that the diffracted wavefront in the immediate vicinity of the

diffracting edge must be cylindrical in order for the equivalent ring

current concept to be valid. The reasons for the existence of a

non-cylindrical diffracted wave near the circular edge in this radiation
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prohlen are two-fold. First, the total field in the immediate

vicinity of the diffracLing edge consists not only of the edge

diffracted field which may possess a cylindrical wavefront, but also

consists of the incident and reflected conical wavefronts associated

with the incident and reflected rays which exit directly from the

aperture. The latter incident and reflected conical rays represent the

ray equivalent of the modal field which impinges on the edge (at z=O)

fro,. within the waveguide region as described earlier. Secondly, the

wavefront of the edge diffracted field in the immediate vicinity of the

diffracting edge may also become non-cylindrical if it is produced by an

incident conical wave corresponding to a waveguide mode far from cutoff

(i.e., when 6nmn and 6nm are close to zero) because in this case an

observation point in the close vicinity of the diffracting edge (at z=O)

can lie within the incident and reflection shadow boundary transition

regions associated with the incident and reflected conical rays at the

edge. Therefore, a procedure different from the equivalent current

c')nc(p)t must be employed to find the field r near 0=0, which is

,H1iatedl from the open-ended waveguide.

A procedure is described below for obtaining f which remains

valid for 0 not only at and near zero, but also for 0 far from zero.

F-urthermore, for 0 far from zero, this result reduces to the first

order (singly diffracted) two point UTO diffraction solution for er

obtained earlier in Fqs. (11,) -(123) where the latter is indeed

expected to be ac(.urate. This procCdure is based on a modification of

Ifiontsev's Physical Theory of Diffraction [24]; it is described next.
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The radiated field Tr can be expressed in terms of the

Stratton-Chu radiation integral [25] over the equivalent surface

currents that exist on the surface,a which tightly encapsulates the

semi-infinite open-ended circular waveguide. Let,4a denote the

circular disc shaped aperture surface at z=O and &~c denote the surface
_r

formed by the exterior walls of the waveguide. Thus, F is given by

[25]

r e-JkR d + o jkR -R
E JkZo f dS [RxRxJ + Y (126)

-r R a + +c eq o eq

where T' is a vector from the origin (0) to any point on a Since one

is concerned with the use of rays in this study, it is convenient to

replace the equivalent electric and magnetic current densities Jeq and

Meq by their asymptotic approximations valid for large ka. Hence, to a

first order of asymptotic approximation,

7fmodal d (127)

eq eq (1•

eq 8  e°dal ad (128)

"eq 'A c (129)

It is noted that feq I c =0 becauseA is a perfectly conducting

exterior wall of the waveguide. In Eqs. (127) and (128),

81

.4'



..nodal I Jnc -mnodal Inc(10
jeq =z X lHmodarl ; Meq E modal x z .(10

-i nc
where Hatodal is the magnetic field associated with the waveguide modes

which impinge upon the circular edge (at z=O) from within the waveguide.
Inc Inc

Likewise, 7modal is the electric field associated with I1modal. On

the other hand, the current densities -? and I{ in Eqs. (127)-(129)

fodal -miodal
denote the Corrections to eq and Meq that result from

nc -inc
the effe'cts of diffraction of the incident modal fields (r~odal, "modal)

at the circular rim (edge). The -dand will be described

subsequently in mure detail.

It is obvious froin the above definition in Eq. (130) that
.jo da. 1

~Jeq =0 on Bc.* Consequently, the result in Eq. (126) can be

decomposed into

'r _U(131)

where

r jkZ 0 e jk 'R ffdS' RxRxJ mdl+ Y RXM moa e jp
P0 -~F R Aa L eq 0 eq 1

(132)

since -=P' on 8,, and,
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-koejR. ^__d jkp'-R

EU = I f dS' [RxRxJ + Y RxM de
U 4 -it -- a 0

jkZ -jekR .d jki '-R

S--JkZ o e- j c dS' [RxRxdJe (133)

Obviously, the term trpo represents the vector Kirchhoff-Huygen's

aperture integral for field radiated by the open end of the waveguide in

which one employs the common approximation that the field in the

aperture at the open end consists of only the waveguide modal fields

which are incident (on the aperture) from within. The diffraction

current densities 1 and 0 in Eq. (133) for EUU provide the correction
r

to the incident mode current approximation in Epo. The integral for Epo

in Eq. (132) has been essentially evaluated by Chu [2] and is also

described by Silver [24]. The result can be rewritten in a more

convenient form for the present analysis as

= (Er + + Er + (E re 0 + E ) (134)

radiation radiation
from TMnm modes from TEnm modes

where

l + n+2 0e 2
E k sifly cosy cos~sin 6n ) osEPO 00= Anmj cose - CoS6nnJ 2sinO(cosO-COS5' 6 nm

NnmJ (P' )J (kasinO) (-sinll e. (135)
n nin n cosno -
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ro + n+2 sin nm Cos nm
E Anj (kZ )p r N' p
P04 ni 0 nin nmn- 0-C 6'(nm)

* J j (kasini3 ) -,-(cs o - (136)

r + n+2 )[sin 6 COS 0 J(
POO fin (kP Cos - Coss' m]Nnmn( )' ( niy

nm

E r ) 0 *(137)

it is further convenient to identify the terms within the square

brackets of Eqs. (134)-(137) as follows.

_____v__ -n i~k 1 D (ir+O, 6; i)(139a)

Cos0-Cos 6 7s

and

n0 Cos 0POF ~O, -k ~1D (139b)
L OS co~ 7 h 7~,6 .
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' for TEn modesnm fo En6= { nm

6 nm , for TMnm modes

where D5  h are the soft and hard physical optics (PO) edge

diffraction coefficients. Far from the axis (0=0); i.e., for large ka
|r

sin e, and 0 not close to {6nm or 6rnm1 , the above results for rp0

in Eqs. (134)-(137) reduce to the two point diffraction form as in
PO

Eqs. (120)-(122), but with Ds appearing in place of Ds as one mighth h

have anticipated. It will be shown below that only when the Eu

contribution of Eq. (133) is added to the tpO of Eqs. (134)-(137) to

obtain E as in Eq. (126), and the result for rr is subsequently

asymptotically approximated for large ka sin 0 and 0 not close to
I

{Snm or Snm}, then the resulting asymptotic form agrees with the two

point UTD diffraction solutions in Eqs. (120)-(122) which is in terms of

Ds. Returning next to the evaluation of U in Eq. (133), it is noted
h d d
that *J and 11 in that equation represent the current densities

associated with the edge diffracted field components. The surface

integrals over Aa and 8c must be evaluated asymptotically along

the coordinate transverse to the circular rim thereby reducing those

surface integrals to a line integral over the circular rim (edge) at

z=0. A stationary phase evaluation of that line integral (or the rim

integral) for ka sin 6 large yields a closed form result for rU

However that closed form result for large ka sin 0 is not valid at and

near the caustic direction (0=0). Clearly, the rim integral therefore

cannot be evaluated via stationary phase at and near the caustic;
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instead, it must be evaluated numerically for e at and near zero.

While the reduction of the surface integral for rUU to the line or rim

integral is conceptually straightforward, it is quite tedious since

d
and id must be expressed in the proper coordinate systems to carry out

the asymptotic end point evaluation of the integral along the coordinate

transverse to the rim. Of course, -? and l are known from the UTD

edge diffracted fields in the problem of plane wave diffraction by a

half plane [1]. These fields are also identical to those obtained by

Sommerfeld in his solution to the problem of plane wave diffraction by a

half plane [26]. In particular,

-d zxH ,on a

px , on Ac (140)

Md = xz ,on Aa

in which and Td  are the edge diffracted electric and magnetic

fields produced by the diffraction of the incident conical wave (which

is locally plane for large ka) at the edge (see Figure 21). A far more

convenient alternative to the Ufimtsev based formulation for e in

Eq. (131) which is given in terms of the surface integral representation

for EU in Eq. (133) is to use the concept of equivalent Ufimtsev edge

currents to obtain Uu directly in terms of a rim integral rather than

the surface integral. This modification of the Ufimtsev based

formulation in Eq. (133) is described below.
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Consider the problem of the plane wave scattering (and diffraction)

by a half plane in Figure 22 for which the exact solution is well known.

It is not difficult to see in this case that when the incident,

reflected, and diffracted fields present in that exact solution are

employed to calculate the equivalent electric and magnetic current

densities in the Stratton-Chu integral [2,25] for the electric field

hp radiated (or scattered) by the half plane, then one should again

recover the original exact solution for the fields scattered (and

diffracted) by that half plane. The Stratton-Chu formulation [2,25] for

lEp is the same as In Eq. (126), and the contours .0a and ac for the

present half plane case are as shown in Figure 22. Note thatsa of

Figure 22 locally simulates the apertureoa of the circular waveguide

(see Eq. (126)). Again, the field T'p can be decomposed into

._r j_
Ehp = EpO(hp) + EU(hp) . (141)

as in Eq. (131). The equivalent electric and magnetic current densities
_r

Jeq and Meq that appear in the Stratton-Chu integrals for EPo(hp) and

r(hp) are given by

'R r + (142

_e q [z xa Aa x ' 12

Meq [(r + T) x z] + (Tx Z) (143)
I~a Aa ,a

: q x fd) Req 0c = 0 . (144)

87

1: ___



CO INCIDENT

I FIELD COMPONENTS 'H
R ,o 44 REFLECTED

"I FIELD COMPONENTS (E~ H

0 />PERFECTLY CONCUCTING
I HALF PLANE FORI -oD<Z<O

z 0 S

DIFFRACTED FIE! D \DIFFRACTED FIELD
COMPONENTS (Il ,A 0)j COMPONENTS (Hd)

Figure~ 22. Diffraction mechanism from a perfectly-conducting
half plane.
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where , r and ? are the incident, reflected and diffracted

components, respectively, of the electric field present in the exact

solution to half plane diffraction problem of Figure 22 and likewise the

ITi  r, and 0id are the magnetic field components associated with ?, r ,

and F It can be shown that an evaluation of the po(hp) integral in

terms of Teq and Req of Eqs. (142)-(144) yields

PO(hp) =7 U( I' '-w) + ErU(I+*'I-7) + Ep (145)

where *'=0, i=ir±6;

1, E >0

u( 112 o j = (146)
0 C {<0

and

P0 = 0 (e, e ; w) e . (147)
at 0

in which YO(w±O o;w) is the uniform physical optics edge diffraction

coefficient in dyadic form and it corresponds to the receiver location

at x . This dyadicPO can be expressed in terms of the (soft,at x>dP

scalar diffraction coefficient Ds in a manner similar to that for D as
0P h

indicated In [1]. The Ds is explicitly given by
h
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Os (,''''=- itan(*-')F[2kRcos (4-)]Ttan(4'F')F[2kRcos('+*")]}
h V 2-F n T

(148)

When Mk cos'(*7.iL>3, the 'T" functions in Eq. (148) are
2 -PO PO

essentially unity, then Ds ( 'di 11) reduces to Ds (4,;1)defined
h Th

earlier in Eq. (139); i.e.,

-j' FT sin isCos P1

-.0 2y 2 irk Lcos4 + cos4"I
Os -e~i [tan 4-')>tanLq4,'v)1
h 2 r7iW 2

.. IF4sin 'Pcos 1
2 172k L cos* + cos' J (149)

and

'-PO PO
Ds Di,'4 s (,'p;) .(150)

h L h

if 2kR co2/0;' >3.

Also, an evaluation of I:U(hp) in terms of the -Jeq and 1Req Of

Ecqs. (142)-(144) must yield

rU(hp) rt , (151)

w here
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-d U -"jkR
Eu  = t * (W-OOo0;• (152)

lat 0 Y /f

=U
The D may be referred to as a "Ufimtsev" half plane edge diffraction

=U
coefficient in dyadic form. This dyadic 0 can also be expressed in

_U
terms of the Isoftj scalar diffraction coefficient Ds , wherehard h

Ds(*,*'.-) = - e'- [(sec(0_* )-tan(*1) 9 •
h Y/~ 2 27Tf

(153)
PO U

It is noted that in contrast to Ds , the Ds is valid at and near the
h h

incident and reflection shadow boundaries in the problem of Figure 22;

these shadow boundaries occur at 1*+*q, = i. Consequently, the
dd

wavefront associated with jj and HU  is always cylindrical and one can

always view the field TUr(hp) as being produced by an equivalent edge

(line) current referred to as an equivalent Ufimtsev edge current; in

particular, one may write

-d -j k R
EU= -ykZo IU 3 e , (154)

_i i
if E = y E only; and

-d e-jkR (155)
HU = -ykYo MU T k

o i I

if H - y H only. Thus, the equivalent electric and magnetic Offimtsev
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half plane edge currents IU and MU, respectively are given by

= - y D (E y) (156)IU 0 T s 7*

U _i
Mr = - zo  Dh (q, ;.) (H • y) . (157)

The above 1U and M11 are obtained by a direct comparison of Eq. (152),

with Eqs. (154)-(155), respectively. These currents ij and MU which

are valid for normal incidence on the half plane can also be directly

generalized to oblique angles of incidence and diffraction on the edge

[23]. Next, comparing the half-plane geometry in Figure 22 with the

local geometry at any point on the circular edge of the open-ended

circular waveguide as shown in Figure 21, it is not difficult to see

that one can define a 0o ={Snm or 6nin} at any point on the circular

edge (at z=O) so that the field in Eq. (133) can now be viewed as

;)eing produced by the equivalent electric and magnetic Ufimtsev half

pldne Pd,)e currents lIj and MU. Thus, using the equivalent current

concept, one may directly employ the Stratton-Chu radiation integral for

Tu in terms of these rim currents IU and MU , to obtain

_r jk~o -JkR ^
Er jkZ R [RxRxI+Yi RxMu]' e jk-'.Rd. '  

(158)
-U U 0 o
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with 2.'d2' = O'ad ' for a circular rim, and p'=p'a. Eq. (158) is in

contrast to the surface integral in Eq. (133) which can he reduced to a

rim integral only after asymptotically evaluating the integral along the

coordinate orthogonal to the rim. Thus, according to the proposed

modification of the Ufimtsev based formulation for obtaining E , one

may write

_r =Er -jkR R jko .R
E =Ep + jkZ e R d f' [RxRxI + Yo0^xM u '1 e

(159)

where 0 is still the same as in Eq. (132). Only the Ell term in

Eq. (133) which occurs in Eq. (131) is now replaced by the line integral

around the edge as in Eq. (158) above. Specifically, the equivalent

Ufimtsev edge currents IU and MU in Eqs. (156)-(157) which are

modified so as to make them valid for oblique angles of incidence and

diffraction on the edge, without the restriction of generalized Fermat's

principle for edges [23] are now defined by

IU . y 1- U ' v'; ') (El, . (160)I YoJ8t 1 Ds (E ;
UL ]-k7 in0  s

and

U  ,i
MuZ , ; So) (H .') (161)
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As shown in Figure 23, io and o are the acute angles made by the

incident and diffracted rays with the tangent (i') to the edge at the

point of edge diffraction, respectively. In the present case of conical

wave incidence at the edge, the axis (or caustic) of the conical wave

coincides with the waveguide axis and hence ao = 
i/2 or sin o  ! in

Eqs. (160)-(161); on the other hand, 3o is given by

sin I - sin2 O sin2 ' (162)

The above I U and MU in Eqs. (160)-(161) reduce to those given

Previously it) Eqs. (156)-(157) for norinal incidence on the edge in which

Bo = n/2 and ic = v/2.

It is important to note that the result in Eq. (159) involving the

equivalent UJfi;ntsev edge current represents a useful modification of the

original tJfiintsev formulation in Eq. (131)-(133). Furthermore, this

modified result in Eq. (159) is quite general in that it can be directly

extended to other anterna and scattering problem configurations

involving edg(es. Basically, the modified result in Eq. (159) implies

that tho radiation or scattering can be calculated according te a

physical optics approximation and be corrected by the equivalent

lifimtsev edge current integral which is then added to the physical

optics contribution of Eq. (159). The result in Eq. (159) is to he

used for 6i 0 (both near and far from zero) and it is expected to be
r

accurate is long as rp() is not vanishingly small. For 0 - -/2, a

doubly diffracted ray becomes important; its contribution can be

c, lulated separately via the UT) and it is simply added to the solution

9i4
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Figure 23. fiffraction froam a curved edge.
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for tr in Eq. (159). For large ka sin 8, the physical optics

contribution in Eq. (159) together with Eqs. (134)-(138) can be

approximated such that the Bessel functions involving ka sin 0 and the

Hankel functions therein are replaced by their large argument asymptotic

forms. When this asymptotic approximation is made, the physical optics

result has the same form as the two point UTD diffraction solution of

Eqs. (120)-(122) except that it now contains the physical optics edge

PO
diffraction coefficients s instead of the HTD edge diffraction

h

coefficients Ds of Eqs. (120)-(122) as mentioned earlier. Furthermore,
h

the rim integral in Eq. (159) can also be asymptotically evaluated for

larje ka sin 0 via the method of stationary phase to yield a result

which is again like the two point UTO diffraction solution except that
U

it contains the Ufimtsev ede diffraction coefficients Ds instead of

h
Ds . However, the sum of the asymptotic approximations, for large

11
ka sin 0, of the physical optics and the equivalent 1fimtsev rim current

integrals agrees with the two point iJTD diffraction solution in

Eqs. (120)-(!2?) because

PO U
Us Ds + Ds . (163)

h h h

It may be remarked that while the two point IJTD diffraction solution in

Eqs. (120)-(122) is accurate for ka sin 0 large, the solution in

Eq. (159) is valid even when ka sin 0 is not large; furthermore, it is

expected to be more accurate than the UTI) solution for 0 + 6nm or

6,, even if the "F" functions present in Os of Eq. (29) are Included
h

in the latter. One notes that the Ressel functions Jn (ka sin 0) or
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Jn(ka sin 0) In the physical optics solutions of Eqs. (135)-(138) for

the TMnm and TEnm cases vanish at 0 = 6nim and 0 = 6nm, respectively;

PO
thereby keeping the solutions bounded even when Ds + - at 8 + Snm

I h P0
or 6nim. Clearly the Bessel functions which keep Ds bounded are

h
to be viewed as incident and reflection shadow boundary transition

functions which yield a result forrpo that is uniformly

valid across the incident and reflection shadow boundaries associated

with 6 = {6nm or 6nm}. It appears that the Bessel-type transition

functions are more accurate than the Fresnel integral ("F"-type)

transition functions of the UTD at least for the present waveguide

problem and especially for ka sin 6 small. Finally, it may be remarked

that the two point UTO diffraction solution valid for large ka sin 0 can

in some problems he generalized heuristically to be valid at and near

the caustic at 0=0 by recognizing the two-point solution to be an

asymptotic approximation of some functional form which yields a bounded

result at the caustic. However, such a heuristic procedure for

generalizing the two-point UTO diffraction solution to the caustic

region is risky in the present open-ended circular waveguide case and it

can lead to an erroneous result. In conclusion therefore, the result

forT r in Eq. (159) is to be employed for all 0.

A direct application of either the UT) result of Eq. (119) (for 0

not close to zero) or even the use of the expression for tr in Eq.

(159) will generally fail to predict the correct value of _r if any

component of Po vanishes at all aspects (see Eq. (134) for rppo).

Such a situation arises, for example, in the prediction of the i

component of YPO for the radiation by an open-ended circular waveguiIe
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r
excited in the TMnm mode. In the latter case, the term Ep0 € is

identically zero in Eq. (134). From a practical point of view, even

r
though Ep0M , =0, its overall effect in the RCS calculation is small in

comparison to the other scattering effects which dominate; hence an

unavailability at the present time of an accurate estimate

based on ray methods and its modifications for r'. 0 radiated from the

open end of a circular waveguide excited by a TMnm inode, is not a

serious problem in the present RCS study. Some typical results for Tr

based on Eq. (159) are shown in Figures 24-25 where they are seen to

compare well with those based on the exact Wiener-Hopf solution [12],
Ar

provided the 0 and ; components of Ep0 are non-zero.

C. Ray Analysis for [S2 1]

The scattering matrix [S21] describes the transformation or

coupling of the incident plane wave field into the waveguide modes as

illustrated in Figure 6. This scattering matrix [S21] was defined

earlier in Eq. (11). The problem of determining [S21] is the reciprocal

of the problem of determining [S12] (see Figures 6-7). Thus, a
I I

knowledge of [S12], or more specifically Sanm, Snm, Sonm, and Senm ,

and the use of the reciprocity theorem for electromagnetic fields allows

one to calculate the elements Senm, Snm, Sanm, and S~nm of $21],

and to hence calculate [$21] in terms of [S12]. Thus, it can be shown

that the elements of [$21] are simply related to the elements of

[S1 2 ] T; here T denotes the transpose matrix operator. The reciprocity

theorem is applied as follows.
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First consider the geometric plane defined by z=-L inside the

semi-infinite pipe, and let So denote the area of this waveguide cross

section at z=-L as shown in Figure 26. Then let S denote the surface

area which tightly encapsulates the complete outer (exterior) surface of

the semi-infinite pipe, and also a portion of the inner walls of this

pipe up to the distance z=-L within the pipe. The surface S does not

include the plane at z=-L within the pipe. Let E denote the sphere

at infinity which surrounds the semi-infinite pipe such that S on the

exterior or outer wall of the semi-infinite pipe is connected to the

surface T at z + -- as in Figure 26. Next consider the following

two cases. In the first case, the semi-infinite circular

wavequile is excited from within by the modal fields with amplitudes
A 11+

An and n which propagate in the z direction. However, in the

socond case the same geometry is excited by an external electric field

i - i
_ = E0 + E which for convenience is assumed to be produced by an

electric test source J. at Rp exterior to and in the far zone of the

semi-infinite pipe. It is assumed that the spherical wave factor eijkRp
Rp

in V is suppressed so that E represents a locally plane wave part of

th field generated by J,. Let JT = + E )6(i]T--PI) j T4  where

UI-RpI ; refers to Dirac's delta function. The modal fields with
+ a _ r r .

amplitoudes Anm and Bnn radiate the fields Enm =EOnmO +E~nmp from the

open end of the pipe in the first case. Likewise the field Ti which

is locally plane at the open end of the pipe launches the modal fields

with amplitudes Anm and Bn within the semi-infinite pipe in the second

case. As shown in detail in Appendix C, one can apply the reciprocity
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theorem to the pair of 0+:ds - and within the rogi on V sounded by

S, So ind F, and tr.,n enforce the radiation condition an -, as well as

the boundary cunditi &n on S (e.q., tan'entia 1 electric- field anishes on

the perfectly ond,,cti,-ij surface S). This yields tie required roail

amplitudes A- and R- in terms of (related to [Sl~l) as foIlows:

" .r Rp.Rp j k R p

v(OEPJ.Rp e 4r (164)
nn 2A+ n x h' * z ds

S

-r -- R eJkRp

(E, + E EMrRpRp. . 4 - (165)
flnn 2M te x h • ds jWU

nii; - n nm

._r
Here, the suhscripts TE and TM in Eqs. (164)-(165) denote that ETE is

raiiated by Anl alone, a'"I LTM is radiated by Bnm alone, respectively.
-r -

iradiated fields fr ETi-- and FTM have been shown in Section (3).

3eauso of the noraljaiztion factor N and N introduced in Table 1,nm on

it is noticed Lho.

1 ff en:n <h ,, z ds 1 (166)

Tne eletmrit; of [V?1] may )e e.1sily obtained, by inspection, from

F,.. (11)-(12) arid (164)-(165) respectively.
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Figure 27 illustrates an example for the coupling into the circular

waveguide due to a unit plane wave incident on axis with electric field

polarized in the y direction. It is noted that only Trim and TMjm modes

yield non-vanishing radiated fields in the axial (0-0) direction, thus

only TEIm and TMjm modes can be coupled into the circular waveguide for

the configuration of Figure 27. The total transverse olrctric fields

evaluated on x (or y) axis are then reduced to only E (or Ep), hecause

all the coupled fields of Figure 27 possess a Cos) - type of
(sin

variations. Figure 28 illustrates the total transverse electric fields

on x (or y) axis at various z=-L inside the circular waveguide (with

ka=35) due to a unit plane wave incident on axis as shown in Figure 27.

D. Ray Analysis for [$22]

The scattering matrix [S22] is a modal reflection coefficient

matrix which is associated with the interaction shown in Figure 7 which

occurs at the open front end (or z=O). This matrix [S??] was defined

earlier in Eqs. (13)-(14). The order of the sub-,natrix elements of
hh or ee he or eh

[$22]; i.e., of [Rnin ; pq 1, and [Rnm ; pq ], are found by employing the

UT) in the following manner. As before, the equivalent ray cone
+ 4-

corresponding to the modes with amplitudes Apq and Rp, which are

incident on the circular edge at the opening of the somi-infinite quid-

make an angle Spq and ,Spq, with the walls, respectively (see Figure

29). Then from UTO considerations, each of these rays diffracts !lack

into the wavguide region at any angle F with the wal 1s. F.xcept for a

mode near cutoff, the angle ' will he far fron any incident or
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reflection shadow boundary that is associated with the cone of incident

rjys at the edge. One may thus define equivalent magnetic and magnetic

dipole edge currents of strength M and Md, respectively, on the circular

rim (or edge) which generate the same diffracted fields within the

waveguide, but near the edge, as those produced by the incident ray

cone. Unlike the equivalent magnetic and electric edge currents shown

in Section (B) which radiate into free space, the equivalent magnetic

and magnetic dip)le currents mentioned above radiate within the guide;

i.e., in the presence of the perfectly-conducting waveguide walls.

ronsLquently the equivalent electric edge current for the exterior field

calculation is now replaced by the equivalent magnetic dipole edge

corrent Md for- calculating the field in the interior waveguide region.

Therafcre, care imust be exercised in defining these equivalent currents

wqnich radiaLe into the waveguide region. It can be shown that the

cgn. r.l form of M is the same as in Eq. (36) except that a factor of

1/? must be included in the definition of this current and also for Md

t,) dCco.nt properly for the presence of the perfectly-conducting

vav,-jluide walls [28,2)] when calculating the field in the interior

waveluide re)i,)n. Spfcifically, the equivalent magnetic current is

given by,

M . 'inc "Z Dh (167)

and Cif, equivi ,nt nagnetic dipole current is given by [27,28],

J nc r I

MI,' . ' , ; Oo 7, (168)
M 9od "1 7 - sin
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where ''=6pq or Spq. Clearly one requires 6' p or p, in

Eqs. (167)-(168) corresponding to the angle made by the incident ray

cone with the waveguide walls. Then the fields radiated into the

waveguide region by the above rim currents may be expressed in terns of

modes in the usual manner by simply invoking the reciprocity theorem to

find which modes are excited by the source [20], i.e., hy tho? rim

current. Since one is interested in calculating the amplitudes A
nn

Bor 13 of the reflected TE or TM modes, respectively, it therefore

follows from physical considerations that one must require nm or

6nm in Eqs. (167)-(168) for these cases, based on the aforementioned

ray-mode equivalence. Thus, one must require that take on the proper

value corresponding to the ray-cone angle 6nm or 6nm which is

associated with the reflected waveguide mode when employing reciprocity

to find the stren,_th of the reflected modes generated by M and M-d of

Eqs. (167)-(168) via [20]. Without presenting any details, one obtains

the required amplitudes A- and B- via the above procedure from which
nin nmn

the elements of [S2 2 ] can be directly extracted (by inspection) via

Eq. (13). In particular,

hh ri -- Tm.(, , • ..-id • ,
R rim[nnm'.M(6nm'6p )+ hznmJ(Pnn,5_ ) dz (179)
nm;pq 2f ffnnn x hn n ds

S
0

ee
R =rtnn.(nP0~dr  (170)

nmn;pq 2 f e nm x_h nn " z ds
S

0

115

' .. __• "-", : " ' :i .. . . " "'



ri.n[h01 rM( iS )]dt (171)
nn;pq 2ff enm x h • z ds

S0
0A

h, rim[hh,,.M(60nfn,
6pq) + hzn.M (6nm,6pq) ]dk (172)

nin;pq 2ff e x • z ds
SO

I', is important to note that the integrals over the rim in

Eqs. (169)-(172) can be evaluated in closed form; likewise the

integrals over the guite cross section So (at z=O) can also be

evaluatd 4n closed form (see Eq. (166)). Fmploying the orthogonality

properLies of the waveguide modes, it can be easily seen that the

umertors f Uqs. (169)-(17?) vanish when itn. Thus, the elemients of

[$2] vanish when 1)tn. For the dominant mode rei qme, it is necessary to

modify the ah,ve equivalent rim currents to include the effects of rays

nultiply diffracted across the aperture. Taking cognizance of the fact

that rnio mu!tiple diffractions occur along the reflection boundaries ot

the i,-ieracting rays, it follows that multiple diffraction calculations

ut Y, trecated carefully by decomposing the non-ray optical fields near

tn, reflection boundaries into their ray optical components as done

prevjoiiy in the calculation of [S11] at 6=0. Following a similar

procedure ,s in Appendix B to include all orders of rays multiply

dirfracaed across the rim, one can show that the final expression forhh

Rn~i;n, which dc1not,1' the reflection coefficient of the TE nm iiode

that is reflectd back into the waveguide when a TEnq mode is incident

at 1-1), and whin is based on Eq. (169), is given by
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hh
Rnm;nq =Ro[+u 2 (6 nm' 6nq) " I+(_I)nA. )

+_) A R _ • (173)
+AoR0  1-u2(6nm, nq) +(-.lnAC

where

N H (2)NnR j n2  Hn (Png) cos 6'
RO N~Nn4k . p'2 j (Pn)

nm nmn n nm

6 61 61 n+ 6ng)
[sec ( nmn- +nq) + sec ( 6 n 2nq)] (174)

22

2 a 2H( 2) ( p n q

.j(ka) tan 6 tan 6m tan 6ng tan 6nm  n
n nq 2 2 !i(?M(p')

n nq (175)

-j(2ka-w)
2ka_ e T (sec ' + sec ' (176)

2/ik

C 1 + (jB)n - (177)
n=1

n=1 (-B). (18

and

-j * (2ka -w)
A -e- 2 a (179)

B e- e j 2 k a  (180)

ee
Similarly, the final expression for Rnin;nl, which denotes the

reflection coefficient for the TMnin mode reflected hdck into the

wavegulde when a TMnq node is incident at z=O, is given hy
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QCe
nn;n q  [ + u2(Sn1 , &nq) • () A  1 (181)

q (-I)A-)

where

N ~ H(2) (pn
R 3 _n nq sin 6nq

o Nnm 4k3 Jn (pn) sin 6nm cos 6nm
n Jim

SIsec. (jnin - 6nq) + sec ( nm + 'nW) . (182)
2 2

eh

Also, the final expression for Rnm;nq , which corresponds to the

reflection coefficient for the TMnm mode which is reflected back into

the wavequide when a TEnq mode is incident at z=O, is given by

eh ± R. . ) .2(_'_)-.. (183)
r ul. q i U 1 i n q l + ( _l )n A -i

where

(2)
= Nri1  inIO  Hn()Pnq COS Snq

1 P 4- m jI (pn) cos 6nin
11M nil n n

__C (LT _ + sec (Inm + 6nq)i (184)

2 - 2

[no ,ipper sitjn "0" in Eq. (183) corresponds to the incident TEnq mode in

Vho upper row, a n(I reflected TMnm mode in the lower row of Table 1. The

Ioier sign "-" in [q. (183) corresponds to the incident TEnin mode in the

lo.ear row, ind reflected IMnm mode in the upper row of Table 1.
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he
Likewise, the final expression for Rnm;nq, which corresponds to

the reflection coefficient for the TErim mode which is reflected back

into the waveguide. when a TMnq mode is incident at z=O, is given by

he
R R1 [1+u2(rm 6 0
nm;riq 1 2am nq 1+(-l)riAD

A 0R 1 [1-u2 (6m 6riq) * C ] .(185)

where

N __ i H(2)(pg
R i n~ n_____ sin
N' 4Z n2nq,rim o0i n(n~~'m)

[sec nm- 6n)+ sec (anm + nq) (186)

2 2

H(2) (p 6n)n 17jA 0 - ni riq tan 6ri cot 6 tan tan(17
H(2)'(p ) m n q r
ni nq)

The upper sign 'Y' in Eq. (185) corresponds to the incident TMnq mode in

the upper row, and reflected TErim mode in the lower row of Table 1. The

lower sign "- in Eq. (185) corresponds to the incident TMnq mode in the

lower row, and reflected TErim mode in the upper row of Table 1.
Pltsofte agiuds f hh hh ee ee
Plos o th manitdesofRii;l1, R01;01, R11;I1, and R01;I)1 in

Eqs. (173)-(182) are shown in Figures 30-31, respectively, as a functiom:

of ka. These UTD based results are also compared with those based on
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Figure 30. Magnitude of the self reflection coefficient for a TEnm
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Weinstein's Wiener-Hopf solution to this problem. One observes from

these figures that the agreement between the UTD and the exact

Wiener-Hopf solution for the reflection coefficients is good. It is

noted that Feisen and Yee [19] have obtained the modal reflection

coefficients associated with acoustic modes reflected from the open end

of a semi-infinite acoustically rigid pipe. They [19] also employed ray

methods, and they used a Poisson sum technique to convert the reflected

ray cones into waveguide modes. On the other hand, the ray to mode

conversion for the more general electromagnetic case accomplished in the

present work involves simply invokirg the reciprocity theorem to

determ.ine which modes are excited by a given source insile the

waveguide; in particular, the sources employed in this work are the

equivalent rim currents. While our procedure may be somewhat less

rigorous than the one in [19] (which employs a Poisson sum technique),

it appears to be simpler and yields results which are also quite

accurate.

F. Ray Analysis for [Sb]

The scattering matrix [Sb], like [S22], is also a reflection

coefficient matrix which is associated with the discontinuity at the

back end, or at z=-L, as shown in Figure 8. Clearly, the elements of

[Sb] depend on the exact nature of the discontinuity at z=-L; as

observed from Figures 1-4, the nature of the discontinuity is different

for the different terminations at z=-L in those figures. Presently, the

following terminations or discontinuities at z=-L are considered;
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namely, an open circuit or open end at z=-L for a finite pipe, a planar

dielectric interface at z=-L in a semi-infinite pipe, a disc-blade

termination in a semi-infinite pipe, and a short circuit or closed end

at z=-L for the semi-infinite as well as the finite length pipe,

respectively.

a) [Sb] for an Open Termination at z=-L

When a finite pipe is open at both ends, it is apparent that [Sb]

is the same as [S22]. Thus,

[Sb] = [S2 23 • (188)

b) [Sb] for a Closed Termination at z=-L

As shown in Figure 3, there exists an electric field which is

incident on the termination from the left side or the region (z>-L);

that field is denoted here by E;, where Ek may represent a TE or TM

electric modal field. Then the total electric field E in the region

z>-L can be expressed as

E :E + c + for z > -L . (189)
kn n n

where cn (n-1,2,..., -)denotes the reflection coefficient for the
+

modal field In which is reflected from the termination at z=-L when the

modal field is incident there. One needs to solve for the
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coefficients cn in Eq. (189) for obtaining the elements of [b in this

case as follows. On the perfectly conducting termination at z=-L, the

following boundary condition must be satisfied; namely,

z x= . (190)

Now the unknowns cn can be determined quite easily from

Eqs. (189)-(190) together with the orthogonality properties of the

waveguide modes; thus,

+ 1-1 n=kn 0 otherwise (191)

It follows that

[Sb] = -I (192)

where [I] is an identity matrix of order x -.

c) [Sb] for a Planar Termination at z=-L

As shown in Figure 32, the guide is loaded with a dielectric

material of relative permittivity er in the region z<-L. The

dielectric interface at z=-L is planar, and perpendicular to the guide

axis. Consider a modal electric field E incident upon this

termination at z=-L from the region z<-L, then the total electric field

E in the region z<-L within the guide can be expressed as,
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Figure 32. IRackscattering frown a semi-infinite hollow pipe loaded
with a dielectric material of relative permittivity
£e' in the region z(-L.
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Ek + C+E +  -L<z<Ok n=1 c n  n

E : (193)

c- E- z < -L .

n=1l n n

likewise the total magnetic field H corresponding to E may be expressed

as

H + cn+ H  -L < z < 0

{k= (194)

c- H- z <-L
n=1 n n

+

Here cn(or cn) denotes the modal reflection (or transmission)

coefficient at the junction z=-L. It is noted that, for -L<z<O,

- -+ + - j Ynm z

n= cn ('n - enz) e n (195)

4- +.Tjnm=c n(-+ hn+ nz) e .z 
(196)

where en (or EFn), and -nz (.r WFnz) denote the transverse and

lcngitudinal electric (or magnetic) modal fields, respectively, and can

De found in Table 1. Ynm can be Snm or inm to denote the TE or TM

modes. For z<-L (in the dielectric region),

-" = (e .en Ynin 
-n =cn (en e )e (197)

± ~-t hn 4- UJ YnnZ
H = cn (t hn+ hnz) e (198)

126



where the expressions for en, hn, enz, and hnz can be found from

able 1 except that the free space permittivity e has to be replaced by

e Cr. Therefore, k2 are replaced by k2er, and Onm (or Onm) by ;nm

(or Bnm), where

2rem = - P 2  for TEnm modes.

~ (199)

nm k2 Cr (.)2 for TM modes.

On r a nm

Then, by enforcing the boundary conditions at the dielectric interface

which require that z x " and z x ' T are continuous at z=-L, and employing

the orthogonality properties of the waveguide modes, one obtains,

R = m nm , (200)
nm;nm 8 1

Onm + 0nm

Ree =nm - crBnm . (201)

nm;nm

Onm + cr nm

All the other elements of ISb] vanish identically. Thus, [Sb] is

reduced to a diagonal matrix, i.e.,

nm;nm [

[Sb] =

[0 nm;nm]

= x = (202)
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d) [Sb] for a Disc-Blade Termination at z=-L

As shown in Figure 1, the planar disc-blade discontinuity comprises

of N blades, placed with an azimuthal periodicity around a central disc.

The blades of length c and the disc of radius b are assumed to be

perfectly conducting and to lie in the plane z=-L. Each blade spans an

angle 4j, and the distance (a-c) between the blades and the cylinder is

assumed to be small. For a sufficiently large number of blades, the

surface current density Ub induced on the composite disc-blade geometry

may be given to a first approximation by

J-b 2 z x Hg , on the disc and blades only, (203)

in which Hg is the sum of all the propagating TEnm and TMnm modes

which are incident on the disc-blade discontinuity. An expression for

Hg is provided in Eq. (7). The approximation in Eq. (203) corresponds

to the geometrical optics approximation for the current. The fields
A

generated by Jb propagate in the +z direction; for propagation in the

+z direction, these fields constitute the reflected waveguide modes in

the region 0>z>-L, and for the -z directed propagation case, they

constitute the transmitted waveguide modes in the region z<-L. Once

again, as in the calculation of the elements of [$22], the reflected and

transmitted waveguide modes generated by Ub may be readily calculated

by invoking the reciprocity theorem to determine which modes will be

excited by a given source within the guide [20]. Thus, the amplitudes

AnIn and Bnm of the TEnm and TMnm modes, respectively, which are

reflected from the disc-blade discontinuity are found to be [20]
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+ -J - J dS
A = Sd nm * b (204)
nm

2ff-e' xh' h z dS
So rm nm

and

+ -If- e J bdS
B m = Sd enm  b (205)

2f-e x-h m zdS
So nm nm

in which Sd denotes the surface area of the disc-blade geometry. The

elements of [Sb].x. can be directly obtained from Eqs. (204)-(205),

which are found as follows.

• hh f f eI x h' z ds
R = _ Sd m pq . (206)nm;pq

"f emx hI * z ds
S nm nm

0

ee f e x h z ds
R = Sd e n m  pq . (207)
nm ;pq e

so  nm hnm

-eh fe x h *z ds
R Sd nm pq . (208)
nm;pq f xh z ds

So  nm nm

and
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f-he x h * z ds
R Sd pnm  q (209)
nm; pq

So enm x h I * z ds
S nm nm

It is noted that the integrals in the latter equations can be evaluated

in closed form.

Some interesting effects are observed in the reflection from a

rotationally symmetric object inside a circular waveguide. It has been

shown [34] that if an object is rotating about the axis of the waveguide

and has periodic characteristics in the azimuthal direction with period

27r/N (N: integer), an incident TEpq (or TMpq) mode can only excite

reflected TEnm (or TMnm) modes where n=p or n=XN±p (x: integer).

Furthermore, only the reflected modes withe n=xN±p, but not n=p, contain

information on the modulation of the reflected wave due to the rotation

of the periodic object. Therefore, if the disc-blade model in Figure 1

contains a large number of fan blades (N), as is usually the case in a

true jet intake, and if the waveguide is not big enough to propagate the

high-order modes with mode number n=tN±p, then one will generally not be

able to observe any modulation effect in the reflected wave.

In the configuration of Figure 2 where the stator and the rotor are

both taken into account, Eqs. (206)-(209) still apply except that the

area of integration Sd appearing in the numerators is now a function of

the relative position of the stator and rotor. When the geometry of the

rotor-stator combination is no longer symmetric, all possible modes can

be reflected corresponding to an incident mode. However, the conversion

of an incident mode into a different reflected mode is usually small
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compared with the self reflection coefficient. The modulation effects

are mostly due to the change in the total area covered by the rotor-

stator combination.

Finally, the matrix [P] which is associated with the phase delay in

the propagation path L can be conveniently written as

e28B IL -- 0 -- 0 -- 0

I N

I -jo' L
0 e nm 0 0

[P]
I _j olL (210)

0 0 e 01 0
1~ N

I N-ja 
Lo 0 0 e n

1
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SECTION 4

NUMERICAL RESULTS AND SUMMARY FOR PART I

Numerical results for the on-axis RCS of the intake blade geometry

in Figure 1, which are based on the MSM, in conjunction with the UTD

together with its modifications at caustics, are shown in Figure 33 as a

function of a/A , with the length L (from the intake opening to the

blades) being kept such that L=1Oa. All of the RCS plots here are

normalized to ffa2 . The number of blades, N=40 for the plot in Figure

33. The mean RCS level in Figure 33 is basically controlled by the

blade scattering, and the ripple structure results from the interference

between the blade backscatter and the backscatter from the intake

opening. The effect of evanescent (non-propagating) modes in the intake

is ignored in these calculations because it is expected to be

negligible as long as L does not become extremely small (or approach

zero). The scattering matrices in the MSM become fairly simple in this

case because first, they are of finite order having neglected the

evanescent modes, and secondly, there are only a few elements involved

for the range of a/A values being considered, since only the first few

propagating modes exist In this case. It is interesting to compare the

intake-blade RCS results of Figure 33 with the RCS of two other related

geometries as shown in Figures 3 and 4, respectively. Thus, Figure 34
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Figure 33. On-axis RCS (normalized to wa2) of the simplified jet
intake model with N blades attached to a circular disc
as shown in Figure 1.
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Figure 34. On-axis RCS (normalized to iTa2 ) of a hollow, perfectly
conducting finite length circular cylinder open at the
front end and closed (shorted) at the back end.
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Figure 35. On-axis RCS (nori- "ized to ira2) of a hollow, perfectly
conducting finite length circular cylinder open at
both ends.
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illustrates the on-axis RCS of a hollow, perfectly-conducting cylinder

of finite length L witn the front end open (as in the intake case) and

with the back end closed (or shorted) with a perfectly-conducting planar

disk. Likewise, Figure 35 illustrates the on-axis RCS of the same

finite length hollow cylinder as in Figure 4 except that it is now open

at both ends. The RCS in Figures 34-35 have also been calculated via

the MSM used in conjunction with the UTD. Clearly, as one would expect,

*he mean RCS level is higher for the finite cylinder with a closed

'snorted) oack end (Figure 3) than for the same cylinder with both ends

open (Figure 4). In the case of the finite cylinder with a closed back

end (Figure 3), the mean RCS level is controlled by the backscatter from

the closed end, and the ripple structure again results primarily from

the interference between the backscatter from the closed back end and

the backscatter from the open front end. In contrast, the mean RCS in

Figure 35 of the finite length hollow cylinder open at both ends is

controlled primarily by the backscatter from the open front end.

However, the ripple structure is primarily the result of interference

between the backscatter from the open front end and the backscatter

resuiting from the wave coupling from the internal to the external

regions of the hollow pipe, and vice versa.

It is important to note that only the TEIm and TM1m modes inside a

circular waveguide yield non-vanishing radiated fields in the axial

(0=0) direction. Therefore, from the foregoing discussions of the

scattering matrix [S2 1] in Section 3, only the TEIm and TM11n modes can

be induced inside the circular waveguide of Figures 1-3 when a plane
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wave is incident in the axial (-z) direction. Furthermore, the TMjm

modes yield very low-level fields in the direction 0=O and the mode

conversion between the TEIm and TMlm modes are small in the

discontinuity at z=-L; for practical purposes, only the TElm modes need

to be considered in the calculations of the on-axis backscattered fields

of Figures 1-3. On the other hand, the TMlm modes may become important

for calculating the RCS for the problem in Figure 4 where these modes

are coupled from the exterior region to the interior at z=-L (and vice

versa). These TMIm modes have been ignored in the calculations leading

to Figure 35 and could possibly account for only a part of the almost 3

dB shift between the results based on (MSM-UTD with modifications) and

the independent moment-method calculations [35] in Figure 35 for the

following reason. It is expected that the mean RCS level in Figure 35

should correspond to the field backscattered from the open front end as

accurately predicted via the (MSM-UTD with modifications) as shown

earlier in Figure 19; consequently, the effect of the TMlm modes would

have to virtually be almost in phase with the backscatter from the open

end to yield a better agreement with the moment method solution by

providing a constant shift in the mean RCS level, but such an in-phase

behavior of the TMjm modes may not actually take place over the entire

range of a/X values considered in Figure 35 and will therefore not

completely explain the puzzling approximate 3 dR shift between the two

independent calculations.

The on-axis solutions of Figures 33-34 can indeed be extended to i

very large a/A. As an example, which can be readily seen from Appendix
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A, only 11 modes (i.e., TE11 through TE1 ,1 1 ), instead of all the 320

modes, need be included when ka=35.2187.

Some additional interesting preliminary results of the work are

shown in Figures 36-41. Figures 36-37 indicate the UTD-MSM based RCS

calculations for a finite or semi-infinite hollow metallic circular

cylinder open at the front end and closed (shorted) at the termination.

These UTD-MSM based calculations are shown to agree very well with

experimental results obtained from elsewhere [13,29].

The computational speed can be examined from Table 2.

TABLE 2

NUMBER OF MODES INCLUDED VERSUS CPU TIME REQUIRED

Approximate CPU time required on a VAX-11/780

computer system to generate the numericalNo. of modes included

values of the RCS for the problems in

Figures 1-4 and for a given aspect angle (e)

5 0.13 sec

10 0.57 sec

15 1.50 sec

20 3.01 sec

25 6.66 sec
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Because the required CPU time increases sharply as one increases the

number of modes, some measures must be taken to extend the solution for

large values ka. To obtain the RCS at any desired angle, it is possible

for the sake of computational efficiency to discard the modes which

radiate weakly in that direction. A weak radiated field also means a

weak induced field in the waveguide via reciprocity. It is noted that

the distance L between the open end and the termination of the waveguide

is so chosen that all the evanescent modes can be negligible.

Figures 39-41 indicate the UTD-MSM based calculations for the

modulation envelope of both the the off-axis and the on-axis RCS for the

configuration in Figure 1, but with two identical sets of planar blades

which are physically located at the same position inside the circular

intake duct. One set of these blades is kept fixed as a stator, while

the other set is allowed to rotate (i.e., it forms a rotor). The RCS

modulation envelope then indicates the extent of the change in RCS

resulting from the motion of the rotor relative to the stator. Another

example is shown in Figure 2 to illustrate the RCS of a semi-infinite

hollow circular cylinder with a rotor-stator combination inside in which

the stator and rotor blades are non-identical. This configuration which

is shown in Figure 2 resembles most jet intake geometries. Consider the

case where the stator and the rotor are assumed to have 60 and 30

blades, and the various angular widths for the stator and the rotor are

20 and 80, respectively. The stator blades are connected to the intake

wall, the length of the rotor blades is c=O.9a, and the radius of the

center disk is assumed to he b=O.2a. Since the relative position of the
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Figure 36. RCS (normalized to ,r82) of a finite length hollow
metallic circular cylinder open at one end but
closed at the other end.
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Figure 37. RCS (normalized to wa2) of a finite length hollow
metallic circular cylinder open at one end but
closed at the other end.
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Figure 38. RCS (normalized to na2) of a semi-Infinite hollow
metallic circular cylinder open at one end but
closed at the other end.
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Figure 39. RCS (normalized to ir 2  oulto ro e
intake model.
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Figure 40. RCS (normalized to wa2) modulation from a jet
intake model.
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Figure 41. RCS (normalized to ira2) modulation from a jet
intake model.
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rotor blades with reference to the stator blades is a periodic function

of time (t) with a period T, the reflection coefficient matrix [Sb]

associated with that composite rotor-stator blade structure

discontinuity, and also, the total backscattered field has the same

periodic property. The angular frequencies present in the backscattered
bS

electric field E are obtained in this case. Frequencies other than

those corresponding to the one associated with the incident wave will be

present in--.b because of blade rotation. In particular, these

additional angular frequencies in resulting from blade rotation

(relative to the stator) comprise the so-called modulation frequencies,

and they give rise to the RCS modulat4'n frequency spectrum. A short

analysis leading to the determination of the RCS modulation frequencies

is provided next as in [30]. Let

rboS = T(t) e t (211)

where wo is the angular frequency of the incident plane wave and Y(t)

is a complex function of t with period T. It can be seen that

T = 6 (212)
wr

where wr is the angular velocity with which the blades rotate.

Y(t) is a periodic function; therefore, it can be represented by

a summation of its Fourier series,

Gj2'mt/T
T(t) = r(m) e . (213)
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If l (m)1-O, for Imj>No/2, then Eq. (213) can be adequately

approximated by

j2imt/T

Y(t) I lT(m) e
m=-No/2

NO-1 j21(m-No/2)t/T
= L T(m-No/2) e (214)

m=O

Let

j 1Not /TY(t) e -- Y1 (t) . (215)

and

T(m-No/2) = T"F(m) . (216)

Then

No-1 j2imt/T

Y1(t)= I Tj(m) e (217)
m=O

The inverse transform is

NO-1 -j2imt/T
=(m)  1 T 1 (t) e . (218)
T- tNo/T=O

The i1(m) in Eq. (218) can be obtained via the Fast Fourier Transform

(FFT) algorithm applied to the RHS of Eq. (218). From Eqs. (211)-(213),

we have

J (wo+21m/T)t
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The power density spectrum of Eq. (219) is defined by

To 0 j[(w-wo)-2wm/T]t 2

S(W) f I (m) e dt
-To m=--

- 2 F(m) sin[(w-wo)-2 m/T]T
°

To m=-=O (w-wo)-2wmlT

o -I*( sin[(w-wo)-2rnm'/T]To . (220)
m'=-F (w-wo)-2lrm'/T

As To

S(w) = 2-n IT(m)i2 6[(w-wo)-27rm/T] . (221)

Thus, the angular frequencies or spectral lines of are located at

= wo + 2im/T = wo + mup ; m=O, ±1, ±2, ... , . (222)

Clearly mwp represent the modulation frequency spectrum for . The

power density spectral lines for the backscattered field at 8=400 (see

Figure 2 for 3) are shown in Figure 42 where it is seen that the

results for the 0 and ; polarized returns are almost identical for the

special case of 0=400.

Additional results for the modulation freqiency spectra are shown

for various combinations of M rotor blades and N stator blades, and for

different 0, and also different ka values in Figures 43-46. The

dimensions of the rotor and stator blades as well as of the central disc
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are also shown in these figures. The various angular widths for the

stator vane and the rotor blade are all kept at 20 and 80, respectively.

Note that the period T depends on the rotor-stator combination, and

except for Figure 42, is not necessarily given by Eq. (212). It is seen

from these RCS modulation spectra that their amplitudes in certain cases

(particularly for certain combinations of the number of rotor and stator

blades) can be significant. Clearly, a more realistic rotor-stator

model would be worth investigating to obtain a more realistic RCS

modulation spectrum of jet inlet configurations. This task is not

simple, but it is hoped that based on some of the results of the initial

study on the RCS of a simplied jet inlet model reported here, it is a

topic which is certainly worth pursuing in the future. The accuracy of

the RCS analysis of the simplified models chosen in Figures 1-4 is based

in turn on the good accuracy obtained in the UTD ray solutions developed

here for the elements of the various scattering matrices in the MSM

based formulation of these problems. The good accuracy of the UTD ray

solutions and their modifications at caustics is established in Section

3 where the results based on the UTD are compared against results

based on available exact (but more cumbersome) solutions in some cases

and based on measurements in other cases. It is also noted that the MSM

has proved to be quite accurate wherever it has been employed elsewhere

for solving various other scattering problems [10]; consequently the

present UTD-MSM analysis is also expected to yield the same type of

accuracy in dealing with the problems in Figures 1-4. An advantage of

the present UTD ray representation for the elements of the scattering
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Figure 42. Power density frequency spectrum of the polarized
backscattered electric field for the problem in
Figure 2 with 0=40*, ka=3.8, number of stator vanes=60,
number of rotor blades-30, disc radius b=0.2a, and the
blade length c=0.9a.
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Figure 42. (continued)
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Figure 43. Power density frequency spectrum of the backscattered
electric field for the problem in Figure 2 with
0=00, ka=3.8, number of stator vanes =40, number
of rotor blades=40, and disc radius, b-0.2a. The
blade length, c-O.9a.
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Figure 44. Power density frequency spectrum of the backscattered
electric field for the problem in Figure 2 with
0=00, ka=3.8, number of stator vanes =20, number

of rotor blades=40, and disc radius, b=0.2a. The
blade length, c=0.9a.
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Figure 45. Power density frequency spectrum of the backscattered
electric Field for the problem in Figure 2 with
0=0, ka=S, number of stator vanes=20, number
of rotor blades40, And disc radius, b=0.2a. The
blade length, c=0.9a.
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Figure 46. Power density frequency spectrum of the backscattered
ele~ctric field for the problemn in Figure 2 with
o=00, ka=5, number of stator vanes=8, number of
rotor blades-4O, and disc radius, h-O.2a. The
blade length, c=0.9a.
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matrices required in the MSM is that they are not only simple (in

comparison to those available from the exact Wiener-Hopf solution), and

quite accurate, but they also yield a physical insight into the dominant

scattering mechanisms present in the problems of Figures 1-4. The

latter aspect of the UTD ray analysis offers the potential for

controlling the RCS.

While it would be worthwhile extending the present work to deal

with more realistic stator-rotor models, it is also worthwhile as a part

of future research to study the effects on the RCS of changing the

cross-sectional shapes of the inlet duct, e.g., from the present

circular form to rectangular, skewed rectangular, semi-circular, or

elliptical forms. In addition, it is also of interest to consider the

continuous changes in the duct cross-section along the length of the

inlet duct, e.g., from rectangular to circular, or a semi-circular to a

circular one with a bend. The latter cross-sectional shapes and changes

in the cross-section along the length of the inlet duct commonly occur

in practice. A related study, which has been under investigation by

Volakis [36], is on estimating the RCS of a jet intake mounted on a

convex surface. All of the above mentioned problems are difficult,

challenging, and worthy of future investigation in the area of RCS

studies.

160

*I

k .~



PART I I

CANONICAL RESPONSE WAVEFORMS OF FINITE AND OPEN

LOADED CIRCULAR WAVEGUIDES

Chun-Vue Lai

David L. Moffatt
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SECTION 1

PRELIMINARY DISCUSSION FOR PART II

The interaction of electromagnetic waves with the jet intake and

exhaust configurations on modern aerospace vehicles are important

scattering mechanisms. While both cross section modification effects

have Deen measured, a firm understanding of the scattering mechanisms

has not followed. The purpose of this report is to first demonstrate

the simplicity and diagnostic potential of the canonical response wave-

forms for a cavity structure and then to postulate an approximate time

domain derived model to predict the scattering from circular waveguide

geometries which is suitable for extension to more complex cavities.

This report is primarily concerned with the spectral rather than

the spatial variation of the electromagnetic scattering properties of

finite and semi-infinite circular waveguides at guide diameters less

than 3.0 or 4.0 wavelengths. Consequently, the interrogating signal

waveforms are limited to axial incidence.
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In the second section of this report, the exact low frequency and

the asymptotic high frequency spectral solutions to an unloaded semi-

infinite open circular waveguide are summarized. The analytical impulse

response waveform is also discussed.

The third section centers upon the backscatter from finite circular

waveguides with open or short rear terminations. The analytical model

chosen is the finite circular waveguide shown in Figure 47. The

waveguide has a diameter 2a and a length L. The waveguide walls are

assumed to be infinitely thin and perfectly conducting. Consider first

the case of a plane electromagnetic wave with shock type time dependence

axially incident on the waveguide. Regardless of the observation point,

the time-dependent scattered waveform must be the same as that which

would be obtained from an open circular waveguide of the same dimension

until such time when the incident wavefront travels to the rear of the

guide and the subsequent perturbation then reaches the observer. It is

clear therefore that some short time portion of the canonical response

waveforms of the finite circular waveguide can be taken from those for

an open or semi-infinite circular waveguide. Simply stated, the

excitation cannot anticipate the termination of the waveguide. Further-

more, the evanescent and propagating modes initially launched at the

guide rim are independent of the rear termination. Therefore the

initial incident waveguide modes on any postulated internal structure

(e.g., blades) and the subsequent reradiation coupling also come from a

solution for the open circular waveguide. This brief discussion

illustrates one reason why a time domain analysis, where a single real

time-dependent waveform of relatively simple shape sums up the
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Figure 47. Finite circular waveguide, L=10a.
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scattering properties of an object at all frequencies, is felt to be a

fundamental approach.

In the fourth section of this report, the effects of internal

loading on open circular waveguides are studiel. The different kinds of

loading include short, disc and blade structures (2 and 40 blades).

They are compared to the case of a hollow semi-infinite circular wave-

guide. This involves the joining of a high frequency and a low

frequency spectrum through a rational function fit, thereby enabling the

time domain responses to be found. Though there is no exact way to

prove the correctness of the fit, the time domain waveforms produced

thereby do satisfy both physical and moment conditions.

In the fifth section, the poles of the open circular waveguide are

explored and some preliminary results are presented. They are based

both on results in the previous sections and on a proposed characteris-

.. equation of the open circular waveguide.

An appendix discusses the implications of the research in this

report on the recognition by active radar sensors of targets with cavity

structures with resonant dimension apertures.
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SECTION 2

SEMI-INFINITE OPEN CIRCULAR WAVEGUIDE

The formulas and results presented in this section are partially

abstracted from a report by Johnson and Moffatt [12] and from a paper

[41] by the same authors. A relatively complete list of significant

references to the Wiener-Hopf solution is given in the report. The open

circular waveguide and the coordinate system are shown in Figure 48.

With the unfortunate e-iwt time convention, the incident and scattered

fields are given respectively as

= eikr (00 + Ei) (223)

eikr (eES + ES) (224)
r

where

Es S B0 S E 4

F::(225)
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z

x

Figure 48. Coordinate system for Wlener-Hopf solution to

semi-infinite cylinder.
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The components of the far field scattering matrix in Equation (225) are

- i 4 n0 O Jn(kasin01) Jn(kasinas)
SV0  n~o Ssln~iL+(kcos01) sin B5L,.(kcosB5)

E(l-cosoi)(1-COSG5) - fn] (226)
2(COSbi+COS~s) If

_____________00 J: OS k n sinei) J'(kasines)

S2i J'(oskan
00 k(l+cosei)(l+coses) n~0 n S r44(kcose1)- M+(kcosG5)

________________) f' (227)L 2(Cos TC-Os OS) -1 f2J

4i____ Sho i (kasino S) j n (kasino .) ~n
6 K +COS Bi n:: I sin~sL+(kcos0s) M+(kcos0i) If

(228) fn

do&#(kasina J (kasini f

k(]+os~) nI SM+(kcos 8s) sinoiL+(kcos3 1) j--f

(229)

W here

i T is assumed

f nL+.(k) 
(230)

n kaM4(k)

and

2 n 1,2,3...(21
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The exact defining integrals for the Wiener-Hopf factorization

functions (L+(k), M+(k) in Equation (230)*) are given in Johnson and

Moffatt [12]. In the same reference these functions are evaluated

exactly (diameter/wavelength less than 3.0) using numerical integration.

For axial incidence (ei=O,n=l) the infinite summations for the

polarization matrix coefficients disappear and

2iacos(s)Jj(kasines) L+(k)SBO

sin(es)L+(kcose )[(2kaM+(k))
2 -(L+(k)) 2] (Oi=O s (232)

2[S i =0 4ika cos(Os)Jl(kaslnes) M+(k)

[1+cose ]M+(kcose )[(2kaM+(k)) 2 -(L+(k)) 2 ] (233)

SO@ = i4asin(.s)J(kasinOs)L+(k)

Oi=O sin(B s)L+(kcose s) [(2kaM+(k))
2-(L+(k))

2 ] (234)

and

SO 4ik2a3sin(% 5 )J1 (kasinOs)(M+(k))
2

oi__0  [1+cos8 s]M+(kcosO s)L+(k)[(2kaM (k))2-(L+(k))2]
(235)

* more properly written as L+(k,n), M+(k,n).
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For axial backscatter (6s=o)

S°= S, - kia 2

ei=Os=O ei=Os=O [(2kaM+(k)) 2 -(L+(k)) 2]

(236)

and, of course, the cross-F)larized terms are zero. Bowman [8] has

given an asymptotic result for the case of axial backscatter which

yields an impulse response approximation through inverse Laplace

transform

Fi(t) = -a 6(t) -a ()m[l+(l)ml(t 2 t)

T7E m=1 m3/ 2 2 t-

a (Am$jY -(-1T]u( 2mto-t)

~Tt m 3/2'2mto t (237)

where to=3/c is the transit time for the guide radius and the spatial

propagation and delay have been suppressed. Beyond the reflected

impulse the response consists of alternating (sign) paired causal and

non-causal contributions delayed by integer multiples of the transit

time for the guide diameter. A sketch of the response of Equation

(237) is shown in Figure 49. While the peaks predicted are

singularities, the attenuation is severe because of the weighting and

only the first few terms contribute significantly. A comparison of the
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Figure 49. Inverse Laplace Transform of on-axis backscatter;

asymptotic approximation.
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impulse response of the open circular waveguide predicted using Fourier

synthesis of the exact results in Equation (236) and Bowman's [8]

asymptotic approximation is reproduced from the paper by Johnson and

Moffatt [41] in Figure 50. Axial backscatter cross sections were

also compared and are reproduced in Figure 51. The asymptotic

frequency domain results of Bowman (1970) were also obtained by Chuang,

Liang and Lee [11]*. The impulse response comparisons in Figure 50

show that the major failure of the asymptotic waveform occurs between

delays of 2 to 6 guide radii transit times. This translates into a

major cross section error of roughly 8.0 dB at a guide diameter of 0.59

wavelengths which is the cutoff wavelength of the first propagating mode

(TE1 ). Progressively, as the guide diameter increases, the peaks of the

axial backscatter cross section occur at essentially the TE mode cutoffs

(TEjj, TE21, TE01, etc.) and the cross section nulls are slightly in

advance (lower D/X) of the cutoffs for the TM modes (TM0 1 , TM11, TM2 1

etc.). From Figure 51, the asymptotic result is a reasonable

approximation for guide diameters greater than one and an excellent one

for guide diameters greater than two.

The simplicity of the time domain waveforms is emphasized. Despite

the complexities of the Wiener-Hopf solution the time domain waveforms

in Figures 49 and 50 are extremely simple. The noncausality of the

odd order summation in Equation (237) precludes direct utilization of

this model for terminated guides and guides with internal structures.

*The exact results of Chuang, Liang and Lee [11) were in error, as

reported in a corrections letter, Chuang et al. [39].
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If the approximation

-a (J)m [1-(-1) m]u(2mto-t)
m=1 3/2

m 2.mto-t

- m+1
-a (J) [1-(-1I)m][u (t-2(m-I)to)-u (t-2mto)]

m 2/mt ot (238)

is made then the waveforms are identical for t > 2(m-1)to (m is odd) but

a small step discontinuity results at t = 2(m-1)to. The asymptotic

waveforms in Figures 49 and 50 have been terminated at zero but

actually are nonzero for negative time and hence noncausal. The

addition of a real axis pole, with high damping, to remove the step

discontinuity in Equation (238) would appear to be feasible. Instead

of the correction of Equation (238), we have

OD m+1-a(t-2 (m-1)to)

gc(t) = -a 0 m l- (-)m] ( 1 -et) [
9 ~ T ~m1 m/ ____) [u(t-2(m-l)t )C -n a - m =l 3/2

m 2/2mt'o t  -u (t-2mt ° OT

(239)

where gc(t) replaces the odd order summation in Equation (237). The

resulting time waveform with the modification of Equation (239) is

shown in Figure 52. It is found that when 0to is of the order of 10,

the asymptotic results in the frequency domain are not altered

significantly.

A comparison was made of the radar cross section of the circular

guide as given by Bowman [8] with that using the modification of
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Figure 52. Modified impulse response of on-axis backscatter

with asymptotic approximation, att0=8.
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Equation (239). The radar cross section according to Bowman is

(converted to eJwt time convention)

J+ ___ /4 ( j)me -j2mka 2
-a2  F-fVa m Iir2  /~ j mi=1 m3/2(2 )

m (240)

The radar cross section with the modification of Equation (239) is

-Jw/4 - j)me-j2mka

m=2 m3/2

m even

'+ (_j)m e-j~k

m 1 3/2 1l-Erfc j j2kk )

m odd

- e'J2mka-2at° [1-Erfc(J j k+2t°)] }+ 2 att

(241)

In Table 3, these asymptotic forms are compared to the exact solution

given by Johnson and Moffatt [12]. It is evident from Table 2-1 that

for D/X > 0.6, the cross sections corresponding to causal and noncausal

time waveforms are equally good approximations of the exact solution.

Asymptotic results obtained from a ray optical approximation,

Bowman [8], are identical to Equation (237) up to m=2 but thereafter

differ in the weights of the terms. The asymptotic result in Figure 50

II
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Equation (239). The radar cross section according to Rowman is

(converted to eJwt time convention)

-JN/4 (j)me- 2mka 2

I / m=1 m3/2 (240)

The radar cross section with the modification of Equation (239) is

+e-Jw/4 = (j)me-J 2mka~ e

m=2 m3/2

m even

(.j)m e-j2mka _rf ___k

-3/2__ r1 - Erf ( /j2ka
m=1 m/
m odd

-j mka-2ot [I-Erfc (j/2ka+2zto]} 2

(241)

In Table 3, these asymptotic forms are compared to the exact solution

given by Johnson and Moffatt [12]. It is evident from Table 2-1 that

for D/A > 0.6, the cross sections corresponding to causal and noncausal

time waveforms are equally good approximations of the exact solution.

Asymptotic results obtained from a ray optical approximation,

Bowman [8], are identical to Equation (237) up to m=2 but thereafter

differ in the weights of the terms. The asymptotic result in Figure 50
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TABLE 3

COMPARISON OF RADAR CROSS SECTION (dg) OF EXACT SOLUTION
(JOHNSON), ASYMPTOTIC SOLUTION (BOWMAN) AND MODIFIED

ASYMPTOTIC SOLUTION (Eqn. 2-19, MOFFATT)
D/A Johnson Bowman Moffatt
0.100 -9.458848
0.110 -8.520934
0.120 -7.646716
0.130 -6.824223
0.140 -6.045925
0.150 -5.305766
0.160 -4.595446
0.170 -3.913079
0.180 -3.255218
0.190 -2.617804
0.200 -2.001531
0.210 -1.408495
0.220 -0.833483
0.230 -0.276990
0.240 0.264939
0.250 0.792181
0.260 1.301408
0.270 1.795182
0.280 2.270724
0.290 2.731840
0.300 3.174628
0.310 3.627388
0.320 4.064384
0.330 4.490535
0.340 4.902714
0.350 5.301191
0.360 5.686905
0.370 6.056279
0.380 6.408279
0.390 6.744378
0.400 7.066416
0.410 7.288048
0.420 7.530067
0.430 7.786634
0.440 8.061458
0.450 8.346395
0.460 8.636331
0.470 8.927008
0.480 9.213129
0.490 9.493250
0.500 9.743763
0.510 9.976593
0.520 10.161530
0.530 10.306625
0.540 10.395186
0.550 10.413555
0.560 10.367692
0.570 10.254469
0.580 9.873226
0.590 8.092514
0.600 6.002594
0.610 4.758259 3.071432 2.880305
0.620 3.745943 3.179154 3.006446
0.630 2.918265 3.244816 3.090103
0.640 2.248425 3.336031 3.203558
0.650 1.711760 3.476034 3.363394
0.660 1,291267 3.585063 3.488144
0.670 0.976372 3.642307 3.560661
0.680 0.755607 3.740452 3.678851
0.690 0.615962 3.907654 3.866302
0.700 0.557735 4.030650 4.003542
0.710 5.867754 4.074891 4.060959
0.720 5.615556 4.203629 4.211191
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0.730 5.300941 4.496467 4.528727
0.740 4.915490 4.701146 4.745268
0.750 4.462694 4.495789 4.531584
0.760 3.960338 3.819680 3.829793
0.770 3.412798 2.965487 2.946289
0.780 2.842850 2.349164 2.317832
0.790 2.256176 2.000432 1.971990
0.800 1.679505 1.635842 1.605475
0.810 1.117669 1.187165 1.147456
0.820 0.591479 0.819100 0.775175
0.830 0.107829 0.564319 0.523153
0.840 -0.325362 0.281201 0.238399
0.850 -0.703480 -0.053583 -0.104108
0.860 -1.026303 -0.324297 -0.378683
0.870 -1.288107 -0.521342 -0.574454
0.880 -1.497142 -0.749196 -0.805479
0.890 -1.655850 -1.009100 -1.073821
0.900 -1.767546 -1.208304 -1.277504
0.910 -1.839869 -1.354398 -1.423762
0.920 -1.882918 -1.531832 -1.606125
0.930 -1.901502 -1.726239 -1.809954
0.940 -1.899772 -1.861168 -1.949681
0.950 -1.890381 -1.957783 -2.047384
0.960 -1.877861 -2.085210 -2.181114
0.970 -1.866457 -2.217362 -2.323117
0.980 -1.861093 -2.292324 -2.402434
0.990 -1.867049 -2.341610 -2.453027
1.000 -1.880707 -2.420392 -2.538043
1.010 -1.907961 -2.494346 -2.622281
1.020 -1.937236 -2.515522 -2.646585
1.030 -1.976914 -2.522350 -2.654363
1.040 -2.021478 -2.556740 -2.695997
1.050 -2.065371 -2.579477 -2.727279
1.060 -2.106021 -2.555760 -2.705028
1.070 -2.140774 -2.527534 -2.677213
1.080 -2.161213 -2.524461 -2.681547
1.090 -2.173288 -2.505359 -2.670043
1.100 -2.165415 -2.447143 -2.611728
1.110 -2.146071 -2.392444 -2.557278
1.120 -2.109116 -2.360129 -2.533267
1.130 -2.059807 -2.309289 -2.489650
1.140 -1.994752 -2.226755 -2.40630C
1.150 -1.919178 -2.153824 -2.334631
1.160 -1.835327 -2.100295 -2.292448
1.170 -1.745910 -2.027018 -2.228523
1.180 -1.656677 -1.928881 -2.129956
1.190 -1.570702 -1.844659 -2.051133
1.200 -1.484781 -1.776799 -2.004253
1.210 -1.408654 -1.688724 -1.934084
1.220 -1.339279 -1.581738 -1.831867
1.230 -1.277167 -1.491552 -1.767274
1.240 -1.222956 -1.414743 -1.771731
1.250 -1.173344 -1.317664 -1.782492
1.260 -1.131993 -1.206690 -1.732754
1.270 -1.089466 -1.114349 -1.629171
1.280 -1.045954 -1.032542 -1.506572
1.290 -1.001394 -0.930583 -1.378139
1.300 -0.949340 -0.818919 -1.253332
1.310 -0.892804 -0.727010 -1.142442
1.320 -0.821347 -0.642964 -1.033542
1.330 -0.741740 -0.538906 -0.910714
1.340 -0.646153 -0.428665 -0.787844
1.350 -0.541254 -0.338876 -0.682887
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1.360 -0.426064 -0.254430 -0.580401
1.370 -0.301055 -0.150045 -0.461617
1.380 -0.168339 -0.042492 -0.343499
1.390 -0.035823 0.044128 -0.244776
1.400 0.104695 0.127807 -0.147102
1.410 0.237799 0.231507 -0.031908
1.420 0.367332 0.335697 0.061024
1.430 0.484647 0.418518 0.173686
1.440 0.597126 0.500756 0.267246
1.450 0.692532 0.603329 0.379283
1.460 0.781571 0.703902 0.487138
1.470 0.859947 0.782561 0.573963
1.480 0.91879 0.863047 0.663914
1.490 0.995187 0.964523 0.773385
1.500 1.055551 1.061533 0.876530
1.510 1.116309 1.135811 0.957706
1.520 1.181357 1.214536 1.044577
1.530 1,251361 1.315421 1.152379
1.540 1.343095 1.409195 1.251371
1.550 1.441111 1.478916 1.327015
1.560 1.557706 1.556167 1.411466
1.570 1.694245 1.657583 1.519011
1.580 1.843339 1.748774 1.614656
.590 2.005405 1.813689 1.684713
1.600 2.185416 1.890157 1.767725
1.610 2.370679 1.994319 1.877441
1.620 2.560735 2.084119 1.971007
1.630 2.746525 2.143686 2.035024
1.640 2.916111 2.220860 2.118327
1.650 3.073452 2.332511 2.235130
1.660 3.206708 2.423400 2.329006
1.670 3.309040 2.476077 2.385360
1.680 3.373470 2.557715 2.472930
1.690 3.398627 2.689892 2.609956
1.700 3.383114 2.788655 2.710307
1.710 3.316839 2.827770 2.751536
1.720 3.205293 2.929719 2.859467
1.730 3.044869 3.150998 3.084904
1.740 2.833142 3.290674 3.218311
1.750 2.592613 3.093302 3.003269
1.760 2.303109 2.531862 2.419261
1.770 1.991521 1.873926 1.745675
1.780 1.658170 1.433071 1.302936
1.790 1.305361 1.187997 1.060206
1.800 0.957284 0.921487 0.791057
1.810 0.610778 0.604546 0.470287
1.820 0.279078 0.359371 0.225954
1.830 -0.032145 0.191296 0.060154
1.840 -0.311415 -0.002104 -0.134483
1.850 -0.558779 -0.224069 -0.358561
1.060 -0.772689 -0.393827 -0.527132
1.870 -0.951250 -0.516808 -0.648159
1.880 -1.097941 -0.664287 -0.796644
1.890 -1.204541 -0.827888 -0.961813
1.900 -1.290164 -0.946561 -1.079222
1.910 -1.342392 -1.033748 -1.164748
1.920 -1.369620 -1.144185 -1.276220
1.930 -1.383562 -1.262092 -1.395434
1.9.0 -1.391595 -1.339409 -1.471423
1.950 -1.385437 -1.395425 -1.526003
1.960 -1.376858 -1.473282 -1.605004
1.970 -1.372984 -1.552135 -1.684992
1.9,0o -1.373787 -1.594074 -1.725501
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1.990 -1.378723 -1.622507 -1.752666
2.000 -1.388200 -1.671246 -1.802734
2.010 -1.409455 -1.716079 -1.848564
2.020 -1.434915 -1.727710 -1.85U604
2.030 -1.468116 -1.732179 -1.862118
2.040 -1.497193 -1.755308 -1.886827
2.050 -1.530067 -1.7700880 -1.903411
2.060 -1.563129 -1.757145 -1.886087
2.070 -1.588005 -1.741491 -1.871730
2.080 -1.605111 -1.742748 -1.875067
2.090 -1.614407 -1.733845 -1.867363
2.100 -1.611845 -1.699564 -1.831599
2.110 -1.597379 -1.667681 -1.799615
2.120 -1.570827 -1.650900 -1.785888
2.130 -1.540240 -1.622135 -1.758935
2.140 -1.492945 -1.571873 -1.707582
2.150 -1.441186 -1.527465 -1.6642952.160 -1.380228 -1.496309 -1.638246
2.170 -1.318419 -1.451953 -1.597253

2.180 -1.255688 -1.389776 -1.535095
2.190 -1.187466 -1.336162 -1.485539
2.200 -1.126583 -1.293949 -1.453743
2.210 -1.073125 -1.237741 -1.405459
2.220 -1.018938 -1.167085 -1.338488
2.230 -0.976863 -1.107094 -1.2944592.240 -0.934144 -1.056673 -1.283988
2.250 -0.899574 -0.991729 -1.264609
2.260 -0.869091 -0.915403 -1.207512
2.270 -0.842774 -0.851337 -1.130548
2.280 -0.811835 -0.795051 -1.052014
2.290 -0.781015 -0.723874 -0.967826
2.300 -0.745597 -0.644072 -0.881069
2.310 -0.705026 -0.577760 -0.804591
2.320 -0.650821 -0.517472 -0.731987
2.330 -0.596142 -0.441996 -0.647846
2.340 -0.526942 -0.360383 -0.560333
2.350 -0.447948 -0.293233 -0.485653
2.360 -0.367513 -0.230377 -0.414110
2.370 -0.271103 -0.152039 -0.329275
2.380 -0.178004 -0.069832 -0.242304
2.390 -0.073619 -0.002917 -0.169533
2.400 0.028423 0.061431 -0.098514
2.410 0.128111 0.141632 -0.013175
2.420 0.224486 0.223572 0.072640
2.430 0.318318 0.289447 0.143230
2.440 0.403315 0.354519 0.213689
2.450 0.479265 0.435962 0.299333
2.460 0.546875 0.517072 0.383632
2.470 0.609710 0.581285 0.451736
2.480 0.662336 0.646574 0.521530
2.490 0.715476 0.728991 0.607470
2.500 0.763727 0.808966 0.6900c1
2.510 0.811773 0.871006 0.755399
2.520 0.860367 0.936242 0.824500
2.530 0.919062 1.019756 0.911021
2.540 0.983261 1.098520 0.991961
2.550 1.064192 1.157938 1.054157
2.560 1.156561 1.223094 1.122714
2.570 1.261352 1.308351 1.210564
2.580 1.383782 1.386109 1.290070
2.590 1.514239 1.442373 1.348605
2.600 1.653584 1.507758 1.417113
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predicts the positions of signularities and discontinuity quite well but

fails to predict the damped sinusoid corresponding to the large error in

cross section at the cutoff frequency of the first propagating mode

TE11 .

If the open circular waveguide is shorted internally at a distance

L down the guide then each propagating mode is reflected as the same

propagating mode. For axial incidence the contribution of the TEll mode

to the backscatter is, according to Johnson and Moffatt [41],

Es = -ei2caBll eCeHEi , (242)

where the coupling coefficient is

' I If

a 2i(k+a 1 )M+(a11 ) f1 , (243)

the radiation coefficient is

CO =+(ka)
2  M+(il) I fl

(k-al) L,(k) 2 -f, (224)
1

and

k1 = ___J_/a "2( )  (225)

I

The J11 is the first (m1) zero of the derivative of the Bessel

function, i.e., 1.84118.

182



SECTION 3

FINITE CIRCULAR WAVEGUIDES WITH OPEN OR SHORT REAR TERMINATIONS

The axial backscatter by the finite circular waveguide shown in

Figure 47 has been computed using a moment method program for rotation-

ally symmetric objects.* Both open and shorted rear termination of the

wavegulde were used. The normalized axial radar cross sections of both

the open and shorted finite guides, a thin circular disk of radius a and

the semi-infinite open waveguide (a few points) are shown in Figure 53.

Several features should be noted. First, for guide diameters less than

the cutoff wavelength of the first propagating mode (TE11 ) the radar

cross sections of the open and shorted cylinders are essentially the

same, i.e., the rear termination is unimportant. This would also be

true for any structure in the interior of the guide provided they are

sufficiently removed from the front of the guide (evanescent modes).

Second, the disk cross section In this same range (D/A < 0.6) is a good

*These computations were made by Dr. W.S.C. Chang of the ElectroScience

Laboratory, Department of Electrical Engineering, The Ohio State

University, Contract No. NOOO14-78-C-0049.
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approximation for the average of the finite guide cross sections.

Third, the disk cross section is a reasonable approximation for the open

waveguide cross section in this same range.

Using computations spanning a/L=0.01(0.01)1.20 the axial impulse

response waveforms of the open and shorted finite cylinders have been

generated using a Fourier synthesis procedure, Kennaugh and Moffatt

[43). These response waveforms are shown in Figure 54 for

respectively the open, 54a, and shorted, 54b, guides. The initial

response, impulse plus ringing (o0t/to420), is the same for both guides

as was anticipated in the Introduction. This response is also the same

as that for the open guide in Figure 50, but for the open guide much

more resolution was obtained because computations to a/X of 6.0 were

used. The negative impulse at the origin was removed in these and

subsequent figures. The basic scattering mechanisms of the finite

guides can be enumerated, some of which are isolated and identifiable in

the waveforms of Figure 54. Recall that both the finite and

semi-infinite guides have an infinitely thin wall thickness.

1. Specular (frequency independent) return which is a weighted

impulse at t/toO.

2. Rim scattering or diffraction back and forth across the front

rim. This is the ringing for oNt/to42.0.

3. Singly diffracted return from the rear of the guide. This

excitation and return travels at approximately the free space

velocity exterior to the guide and is clearly identifiable as

the spike (bandlimited approximation of an impulse) at

t/to-20.0.
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4. Diffraction across the rear of the guide or a doubly diffracted

contribution, which is masked with other effects in Figure 54.

There are, of course, also evanescent waveguide modes for both guides

which are unimportant for these geometries. The above four mechanisms

are identical for both guides.

5. Propagating modes are coupled into the guide structure,

reflected at the termination and then reradiated at the front

of the guide. The reflection coefficient at the rear is

obviously different for the open and shorted guides. Note,

however, that there is no mode conversion for these

terminations. In time, these mechanismis must occur later than

t/to=20.O because of the mode energy velocity in the guide.

6. For the open finite guide another scattering mechanism exists

which has two reciprocal forms. Coupling into the guide at the

front as waveguide modes, guide propagation and then

diffraction at the rear of the guide and free space propagation

in the backscatter direction. Obviously the reverse or

reciprocal mechanism also occurs.

A principal advantage of the time domain viewpoint is that the

above scattering mechanisms can, in principle, be separately removed

from the total response waveform. More importantly, approximate impulse

response waveforms for these and similar cavity geometries can be

constructed by simple addition of basic waveforms with appropriate

delays. The impulse at the waveform origins in Figure 54 and Figure

50 is simply predicted by asymptotic theory. In fact, the impulses

shown have been added artificially. The weight of this impulse, Equation

10
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(237), was subtracted from the frequency domain data before Fourier

synthesis in order to improve details of the waveforms for short times.

In a similar fashion, the singly diffracted contribution which is

easily predicted via the geometrical theory of diffraction (GTD) as *

S -j2kl -jkR
ESD E a e e 4 (246)

can be removed.

The impulse response waveforms of the finite open and shorted

guides with the specular contribution removed are shown in Figure 3-3.

It remains, in this time span, to approximate the sinusoidal delay for

ot/to420.O. This type of appriximation is discussed later.

UTD provides excellent asymptotic frequency domain approximations

for the doubly diffracted contribution. Unfortunately the finite guides

have a cylindrical caustic on the guide axis. The proper constant phase

shift correction at all frequencies for this caustic results in a

nonphysical system and consequently a noncausal response in the time

domain. Thus if this term is subtracted before synthesis a distortion

of the resulting waveform at times before this contribution can possibly

arrive results. This is illustrated in Figure 56 for the finite

shorted guide. Comparing Figure 56 and Figure 55b it is seen that a

distortion before t/to=20.O has occurred and this cannot occur

*Modern Unified Theory of Diffraction (UTD), Pathak and Kouyoumjian

offers more sophisticated results but the simpler GTO formula is

adequate here.
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physically. The asymptotic phenomenon occurring was shown in Figure 49

for a different type of response. Note carefully that in time the

doubly diffracted contribution physically begins to occur at

t/to=20.O+c. According to the asymptotic theory it is identically zero

for t/to>22.0. It is precisely this caustic correction problem which

prevents a large number of GTD and UTD results from being fully

exploited in the time domain. The difficulty has been known for some

time, Moffatt [53], but a simple effective solution has not ensued.

For the finite shorted guide we can consider removing mechanism 5,

the propagating mode contributions, by utilizing results from the

solution for the open circular waveguide with a shorting plate as shown

in Figure 57. This contribution must be the same for the two

structures. The axial backscatter, based on coupling and reradiation of

the TE1 1 mode and neglecting the rim scattering was given in Equation

(242). Radar cross section calculations of the open waveguide in

Figure 57 which include the TE11 and TM1 1 modes and the rim

contribution have been made, Johnson and Moffatt [41]. Unfortunately

the propagating mode contributions were not separated and the time

waveform corresponding to Equation (242) will require some repeated

calculations. Since these involve the Wiener-Hopf factorization

functions they are not simple.

An extensive table of values of the factorization functions L+(a)

and M+(ci) computed by numerical integration is found in Johnson and

Moffatt [12]. We are now interested in the case of n=1 (backscatter).

For 0.140 /X4O.7, the L+ and M+ functions vary smoothly except at a cusp

in the imaginary part of the M+ function at I/=0.5861. An interpolation
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program was written to obtain values of the factorization functions at

inbetween frequencies. It avoids interpolation across the cusp which

would lead to erroneous results. The results for L+(k) and M+(k) for

the n=l case are given in Table 4.

Based on the simplest asymptotic forms, the axial backscattered

field is given by, Johnson and Moffatt [413

-sa2  + a(4+j I I e 2sL/c

(j 1)8s a/c (247)

The time waveform corresponding to Equation (3-2) is

FI1(t) -a a,(t-L) + a 4.j)  u(t-2L

(248)

The most obvious difficulty with Equation (248) is the delay--we know

that it should be slightly greater than 2L/c. The precise inversion of

12aL 121 /(w)2_j 2 " /a2

e e (249)

yields

-1 -j2L s +J11 =

S2

-I (t(Eal_ -a . . u(t2 1)

ci a Vt'2_ 2-Lc)f

(250)
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TABLE 4

RESULTS FOR L+(k) AND M+(k) FOR THE n=1 CASE.

L (k) M (k)

n D . I/ Real Imag. Real Imag.

1 .100 1.0 0.9595 0.1825 0.3033 1.6039
1 .110 1.0 0.9523 0.1904 0.3020 1.4605
1 .120 1.0 0.9446 0.2136 0.3007 1.3411
1 .130 1.0 0.9362 0.2207 0.2994 1.2403
1 .140 1.0 0.9273 0.2433 0.290I 1.1541
1 .150 1.0 0.9179 0.2574 0.2968 1.0796
1 .160 1.0 0.9078 0.2711 0.2954 1.0145
1 .170 1.0 0.8972 0.2843 0.2941 0.9572
1 .180 1.0 0.8861 0.2971 0.2928 0.9064
1 .190 1.0 0.8743 0.3095 0.2915 0.8611
1 .200 1.0 0.8620 0.3214 0.2902 0.C205
1 .210 1.0 0.8510 0.3324 0.2CC4 0.7829
1 .220 1.0 0.8398 0.3429 0.2866 0.7487
1 .230 1.0 0.8284 0.3528 0.2848 0.7175
1 .240 1.0 0.8167 0.3622 0.2829 0.6M00
1 .250 1.0 0.8048 0.3711 0.2810 0.6623
1 .260 1.0 0.7927 0.3795 0.2791 0.6379
1 .270 1.0 0.7804 0.3873 0.2771 0.6152
1 .280 1.0 0.7678 0.3946 0.2752 0.5942
1 .290 1.0 0.7550 0.4014 0.2732 0.5745
1 .300 1.0 0.7420 0.4077 0.2712 0.5561
1 .310 1.0 0.7300 0.4139 0.2696 0.5378
1 .320 1.0 0.7181 0.4196 0.2679 0.5205
1 .330 1.0 0.7061 0.4248 0.26G4 0.5040
1 .340 1.0 0.6941 0.4296 0.264& 0.4V83
1 .350 1.0 0.6822 0.4340 0.2632 0.4133
1 .360 1.0 0.6702 0.4379 0.2617 0.45L9
1 .370 1.0 0.6583 0.4413 0.2602 0.4451
1 .380 1.0 0.6464 0.4443 0.2587 0.4319
1 .390 1.0 0.6344 0.4469 0.2573 0.4192
1 .400 1.0 0.6225 0.4490 0.2558 0.4069
1 .410 1.0 0.6112 0.4513 0.2530 C.3972
1 .420 1.0 0.6001 0.4533 0.2509 0.3570
1 .430 1.0 0.5890 0.4549 0.2494 0.3764
1 .440 1.0 0.5781 0.4563 0.24C6 0.3653
1 .450 1.0 0.5673 0.4572 0.2403 0.3538
1 .460 1.0 0.5566 0.4579 0.2485 0.3420
1 .470 1.0 0.5460 0.4582 0.2493 0.3291'
1 .480 1.0 0.5356 0.4582 0.2505 0.3173
1 .490 1.0 0.5253 0.4579 0.2521 0.3044
1 .500 1.0 0.5151 0.4572 0.2542 0.2913
1 .510 1.0 0.5053 0.4568 0.2566 0.2779
1 .520 1.0 0.4956 0.4562 0.2595 0.2643
1 .530 1.0 0.48G1 0.4553 0.2626 0.2504
1 .540 1.0 0.4768 0.4543 0.2661 0.23G2
1 .550 1.0 0.4676 0.4530 0.2699 0.2219
1 .560 1.0 0.4586 0.4515 0.2740 0.2073
1 .570 1.0 0.4498 0.4497 0.2783 0.1926
1 .500 1.0 0.4411 0.4478 0.2895 0.1693
1 .590 1.0 0.4326 0.4456 0.3196 0.1553
1 .600 1.0 0.4243 0.4432 0.3523 0.164C
1 .610 1.0 0.4162 0.4410 0.3720 0.1720
1 .620 1.0 0.4083 0.4387 0.38C2 0.1792
1 .630 1.0 0.4005 0.4362 0.4011 0.1165
1 .640 1.0 0.3929 0.4336 0.410C 0.1!38
1 .650 1.0 0.3855 0.4308 0.4175 0.2011
1 .660 1.0 0.3783 0.4279 0.4213 0.20C5
1 .670 1.0 0.3713 0.4249 0.4223 0.2159
1 .610 1.0 0.3644 0.4217 0.4206 0.2234
1 .690 1.0 0.3577 0.41C4 0.4165 0.2309
1 .700 1.0 0.3512 0.4149 0.409 U.23e>
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This waveform would have to be convolved with the inverse transform of

the Be1C H expression in Equation (242) to yield the true impulse

response of the coupled and reradiated mode. The impulse term in

Equation (250)'is a precursor illustrating that even for guided waves

the first presence of the signal (perfect detector) arrives with the

velocity of light in a vacuum. The signal front buildup is dictated by

the second term in Equation (250). For guided waves the topic of

transients was discussed by Cerillo [37]. The present case is further

complicated by the coupling and radiation expressions, which are also

frequency dependent.

The doubly diffracted contribution in the time domain for the

finite shorted cylinder is given by (asymptotic estimate)

FIDD(t) = -2 u(22to-t) (251)

0

According to this estimate the contribution endures only for t/to422.0

(to=a/c). The essential truth of this can be seen by comparing Figures

54b and 56. For to/t>22.0, the response waveforms are identical.

Therefore for t/to>22.0, the waveforms in Figures 54b, 55b and 56 are

the coupling, guide propagation and radiation of basically the TE11 and

TM11 circular waveguide modes. At the smallest wavelength calculated,

a/X=1.2, there are actually 10 TE and 6 TM modes which can propagate but

for axial backscatter, only the TE11 and TM11 modes are of any real

consequences. At other aspects or for terminations which cause mode

conversion this will no longer be true. We postulate therefore that on-

axis the backscatter contribution from coupling and radiation consists
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of a weighted doublet delayed by 2t/(energy velocity of TE1 l mode) and

then damped sinusoid contributions which originate at times dictated by

the energy velocity of the higher order modes. Impulse and step

response waveforms due to the short inside the semi-infinite guide are

obtained from inversion of Equation (242) for 0.64D/X2.6 in steps of

D/X=O.01, as shown in Figure 60a and 60b respectively. (Recall that

below D/X= 0.5861, the cutoff frequency of TE1 mode of the circular

waveguide, there is no return from the short.) These time waveforms

agree well with our postulation.

For completeness of the canonical response waveforms, the step and

ramp response waveforms of the open and shorted finite circular

waveguldes are shown in Figures 58 and 59 respectively. The smoothing

effected by integration and, for the ramp response, the emphasis on low

frequencies is very evident.
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SECTION 4

INTERNALLY LOADED OPEN CIRCULAR WAVEGUIDES

In this section, we study the effects of loading inside a semi-

infinite circular waveguide. We choose this waveguide instead of the

finite guide because we thus eliminate a myraid of diffractions from

the termination of the guide. Furthermore, the exact low frequency

Wiener-Hopf solution is available for the semi-infinite circular

waveguide. The loading is placed at a position five guide diameters

down from the opening of the guide.

In particular, we are studying the time domain on-axis impulse

response of the semi-infinite circular waveguide with or without

loading. A Fourier synthesis procedure is used to obtain the time

domain response. The frequency spectrum consists of three regions: 1)

low frequency (below cutoff) region; 2) high frequency asymptotic

region; and 3) a resonance region between the high and low frequency

regions which will be approximated by a rational function fit.

The low frequency region was calculated for D/X=O.01 to O/X=0.58 in

steps of 0.01. It is calculated using equations and data on the Wiener-

Hopf factorization functions given in the report by Johnson and Moffatt
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[12]. It is therefore the exact Wiener-Hopf solution. Since the

cutoff wavelength for the TE11 mode of the circular waveguide occurs at

D/X=0.586, this low frequency region is identical for all cases of

loading, including the absence of loading.

The high frequency solution is computed via the methods of physical

optics for the internal load and the geometrical theory of diffraction.*

It extends to O/X=2.60. A detailed discussion is given by Pathak and

Huang [50].

For the region between the high and low frequency regions, a

rational function of the form

F(jka) = n O An(jka) (252)
h m

I+1 Bm(jka)
m=1

is used to fit points in the high and low frequency regions.

To ensure, in part, the correctness of the rational function fit,

the following checks are made.

1. Since the load is placed five diameters down from the open end

of the guide, the impulse response for 0ot/to420.O (t o2) and

all cases of loading should be the same as the case of no

loading in the same time period. Furthermore, the impulse

response for 0t/to420.O should be the same as that of the

*These computations were made by Mr. C.C. Huang of the ElectroScience

Laboratory, Department of Electrical Engineering, The Ohio State

University, Contract No. F19628-80-C-0056.
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finite waveguide discussed in Section 3.

2. The impulse response and step response must satisfy the moment

conditions.

f Fi(t) dt 0 (253)
0

f Fu(t) dt = 0 (254)
0

where Fl(t) and FU(t) are the impulse and step response

respectively.

It must be understood that in the absence of experimental data it

is not possible to completely verify the calculated results.

Experimental data to verify the calculations would require either an

experimental pulse range or very broadband scattering data to isolate

the rim plus load return.

In the following sections, (4-1) to (4-5), results for the cases of

apen circular waveguide, shorted open circular waveguide, non-shorting

disc in open circular waveguide and planar blade geometry in open

circular waveguide (40 blades and 2 blades) are presented. These

configurations are shown in Figure 61.

All the frequency data have spacings of D/X=0.01 and the following

notation is used:

Fasy(s)[D/=0.64, 2.6] means the asymptotic frequency response for

0.64D/Xe2.6 in steps of D/A=0.01. It is equivalent to

Fasy(s)[u(D/)-0.64)-u(D/X-2.61)] where u(D/X) is the discrete unit step

function.
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Figure 61. Configurations of various loadings inside semi-

infinite circular cylinder.
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4.1 Open Circular Wavegulde

This is a well known geometry and will also be referred to as the

hollow cylinder from here on. Frequency data used are given by

Fhollow(s) [D/X=O.01, 2.6] = Flow(S) [D/X=0.01, 0.58]

+ F rat(s) [D/X=0.59, 0.99] + Fasy(s) [D/=I.0, 2.6]

(255)

Flow(s) is the exact Wiener-Hopf solution given by Johnson and Moffatt

[12]. Fasy(s) [D/=1.0, 2.6] is the asymptotic solution given by

ES = -a I - e-i(2ka-T) EI - i ej 2ka e'W e-kR

(256)

Lastly, Frat(s)[D/X=0.59, 0.99] is the rational function fit spanning

the two solutions. Figures 62a and 62b show the magnitude and phase

respectively of Fhollow(s) up to D/A=1 .4. The frequency response is a

slowly varying function and the rational function fit is represented by

the solid curve in Figure 62. The impulse and step responses obtained

by inversion of Equation (255) are shown in Figures 63a and 63b

respectively. Again the negative impulse at the origin of the impulse

response curve is removed by adding an appropriate positive constant to

the frequency response. This also applies to all subsequent plots.

When Figure 63a is compared with the ONt420to region of Figures 54 and

55, it is seen that agreement is excellent.
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4.2 Shorted Open Circular Waveguide

A short is placed 5 diameters down from the open end of the semi-

infinite guide. An exact solution for the contributions of the short is

given by Equation (242), which we shall call Fsh(s). Therefore, the

frequency data for this geometry are constructed as follows:

Fshort(s)[D/X=O.01,2.6] = Fhollow(s)[D/X=O.01,2.6] + Fsh(s)[O/X=0.6,2.6]

(257)

Fhollow(S) is the same as that given by Equation (255) and Fsh(S) is added

to Fhollow(s) term by term for 0.64D/X<2.6 . Figures 64a and 64b show

the impulse and step responses of the shorted open circular cylinder via

inversion of Equation (257). It is notable that for O.Ot<2Oto(to=a/c)

the impulse response is the same as that of Figure 63a while for

t/to0 20., the impulse response is the same as that of Figure 60a. This

suggests that we can deal with the cylinder and the loading separately,

thus greatly facilitating the computations.

4.3 Non-Shorting Disc in Open Circular Waveguide

This is a more complicated problem since the frequency response is a

rapidly varying function above cutoff of the TEll mode of the circular

guide. There is no closed form expression for the high frequency response

and an asymptotic solution (Fdi(s)) is obtained numerically using GTD and
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the physical optic approximation for the disc.* For frequencies below

cutoff, Flow(s) in Equation (255) is used.

The frequency data used are as follows:

Fdisc(s)[D/)=.0.1,2.6J = Flow(S)[0/X=0.01,O.58] + Frat(S)[0/X O.59,O.63]

+ Fdi(s)[O/X=0.64,2.6] (258)

The rational function fit is needed as we know that the asymptotic

solution is not satisfactory for the region immediately above cutoff. A

number of points from Flow(s) and Fdi(s) are used as input to a program

computing the coefficients of Equation (252) by a least square error

algorithm. This is a trial and error method and the "correct" solution

must satisfy both physical constraints and the moment conditions.

Figure 65 shows the impulse response of an "incorrect" frequency

solution. The waveform for O.4t/to420 does not agree with the

corresponding waveform for the hollow cylinder, Figure 63a.

A satisfactory solution is given in Figure 66 and Figure 67. The

circles represent the solution for the hollow cylinder, while the

triangles represent the asymptotic solution. The solid line of Figure

66 shows how the rational function fit behaves inside and outside the

unknown region o.5940/X4O.63. The squares in Figure 67 represent the

rational function fit. The corresponding impulse and step responses are

*These computations are made by Mr. C.C. Huang of the ElectroScience

Laboratory, Department of Electrical Engineering, The Ohio State

University under Contract No. F19628-80-C-0056.
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Figure 67a. Frequency spectrum (mgnitude) for the non-

shorting disc.
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given in Figure 68a and 68b respectively. Again note that for

0.,t/to420.0 the impulse response agrees with that of the hollow

cylinder and the return from the disc starts only at t=20t o.

In general, the high frequency asymptotic frequency data is

excellent for D/A greater than 1.0. For the case of the non-shorting

disc, we have used the asymptotic solution down to O/X=0.64; Equation

(258). The reason that this is possible is that the return from the

disc is much stronger than that from the rim at these frequencies. This

is clear when we examine the region D/X>0.6 of the semi-infinite hollow

cylinder (Figure 62a) and that of the hollow cylinder loaded with a

non-shorting disc (Figure 67a).

In target identification, we would be interested in the structure

that is present inside the cylinder. In our present study the loadings

are always placed five diameters down the guide so that by the time

t=20to , the ringing from the rim has died down substantially. Also in

the case of the non-shorting disc the return from the loading starting

at t=20to is rather strong. When these two conditions are not met, that

is, if the return from the loading occurs when the ringing from the rim

has not died down enough (due to position of loading inside cylinder) or

if the return from the loading is so small that it has comparable

magnitude as the ringing from the rim at the instant, the waveform of

the return from the loading is masked. Therefore, it is of special

importance that the reflection from the loading inside the cylinder be

isolated.
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Furthermore, in the process of isolating the return waveform from

the loading, we can partly verify the correctness of the frequency

domain solution. A valid waveform would have to be zero for 0.<t/to<20.

and starts at t=20to .

We shall first obtain the frequency spectrum for the reflection due

only to the non-shorting disc inside the guide which we shall call

Fdisc only(s)- Note that below D/X=0.5861 there is no wave propagating

inside the guide and the spectrum is identically zero in this region.

F disc only(s)[/=0.59,2.6] =

Fdisc(s)[O/X=O.01,2.6] - Fhollow(s)[D/X=O.01,2.6] . (259)

The impulse response obtained via inversion of Equation (259) is

sho~n in Figure 69. When compared with Figure 68a, we see that this

is an excellent way to study the effects of loading. It can be applied

to experimental situations with other waveguide geometries and loadings.

4-4 Planar Blade Geometry in Open Circular Waveguide (40 blades)

The geometry of the loading is illustrated in Figure 61. There

are forty blades around a small circular disc positioned 5 diameters

down the guide. The frequency data are obtained in the same way as that

of the non-shorting disc case and are shown in Figure 70a and 70b.

The impulse response and the step response are shown in Figures 71a

and 71b respectively. Note that they are very similar to the solution

for the non-shorting disc (Figures 68a and 68b). This is attributed
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to the highly symmetrical property of the geometry and the large

reflection area of the lodding. Thus it is not very different from the

non-shorting disc particularly as we are using the physical optics

approximation for the loading.

4-5 Planar Blade Geometry in Open Circular Waveguide (2 blades)

The geometry for this case is shown in Figure 61. We shall study

the loading with the blades at 00, 450 and 900 with respect to the

polarization of the incident electric field. The frequency spectrum for

the 00 case is shown in Figures 72a and 72b. The corresponding

impulse and step waveforms are shown in Figure 73a and 73b. It is

apparent that the return from the loading is not strong and is therefore

masked by the ringing from the rim. Here is an example where we would

like to isolate the return due only to loading. Following the procedure

described by Equation (259) in Section 4-3 we obtained the impulse

responses for the 00, 450 and 900 cases as shown in Figure 74a, 74b

and 74c respectively.

The modulation effect is primarily evident in the amplitude of the

waveform. We have used frequency data up to D/X=2.6 and thus included

altogether 18 TE and TM modes. However, the TE11 is the dominant mode

and its electric field lines diagram is shown in Figure 75. Therefore

it is clear that for the 00 degree case, the return is strongest. Note

that the area of the small circular disc at the center is 0.097ra2 while

the area of the two blades together is only 0.0167ra 2. Thus the modula-

tion effect is not very dramatic since the small disc plays a leading

role.
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with respect to polarization of incident
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Figure 75. Electric field lines for TE11 mode inside circular

waveguide.
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SECTION 5

COMPLEX NATURAL RESONANCES OF OPEN AND FINITE CIRCULAR WAVEGUIDES

The complex natural resonances of a scatterer offer a unique way of

identification, Moffatt [47]. They are also necessary for the make-up

of the K-pulse, Kennaugh [44], a somewhat different target recognition

tool. Although the importance of the complex natural resonances is

recognized by many researchers, the resonance locations have been

obtained only for a few simple geometries.

In this section, three different approaches are used to find the

complex natural resonances of the open circular waveguide; eigenanalysis

of time domain waveforms, rational function fit of frequency domain data

and complex roots of a postulated characteristic equation.

The eigenanalysis solution of min-max problems involving squared

error is described extensively in the literature, Guillemin [40]. It

has also been shown, Moffatt et al. [49], to be less sensitive to

noise than similar procedures, e.g., Prony's method.

Time domain impulse response waveforms of the finite cylinder

(Figures 54a and 54b) are used in the present analysis. Since we note

that for O.Ot/to420.O (to=a/c, a=radius of circular guide, c=speed of
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light), the impulse responses are the same for the open cylinder and the

shorted cylinder, the result of eigenanalysis in this region is the same

for both cases and is shown in Figure 76. The plot is in the complex

ka (normalized s) plane and it is evident from the plot that the real

part of the extracted pole locations vary over some range. The shaded

area in the plot indicates that the pole can occur anywhere in the

region. This is a common shortcoming of the eigenanalysis methods.

The uncertainty of the real part of pole locations according to the

eigenanalysis method (including Prony's Method) is attributed to the

fact that the exact order of the system is unknown while we look for a

certain number of poles. Also it is known that the sampling interval

affects the solution, Moffatt et al. [49].

Figure 77 and 78 show results of eigenanalysis of the region

24.<t/to<.40. for the cases of a cylinder open at both ends and a

cylinder with rear end shorted respectively.

In the second method, the moment method solution for the hollow

finite guide shown in Figure 53 is used in a rational function fit.

Frequency data are for 0.02D/Xv.0.56 in steps of 0.02 (D is diameter of

guide, X is wavelength). As we noted earlier, the cutoff frequency for

the TEIl mode of the circular waveguide is D/A=0.586, the frequency data

includes only the effect of the rim and diffraction at the rear via

propagation on the outside of the cylinder.
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finite waveguide.
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Thus a model represented by the rational function

M -20jka N
I Am(ka)m + e Y Bn(ka)n

F(ka) = m=o n=o (260)

1 + Z Cj(ka)J

j=1

is proposed. The coefficients Am, Bn and Cj are real and are determined

through a least square error algorithm. Then the expression in the

denominator of Equation (260) is solved to obtain the complex natural

resonances. The e-j20 ka term represents the time delay of contributions

from the rear of guide. Two cases are presented here in Table 5.

TABLE 5. COMPLEX NATURAL RESONANCES EXTRACTED USING MODEL OF

EQUATION (5-1) AND MOMENT METHOD SOLUTION OF BELOW

CUTOFF REGION OF FINITE CIRCULAR GUIDE.

M=N=5, J=6 M=N=4, 1=5

-0.238 - j 1.832 -0.230 - j 1.688
Complex natural Set A

-0.238 + j 1.832 -0.230 + j 1.688
resonances

-0.557 - j 1.086 -0.518 - j 1.16
Set 9

-0.557 + j 1.086 -0.518 + j 1.16

We recall that the resonance locations in Figure 76 did not

include the diffraction from the rear, while the complex natural

resonances in Table 5 include both rim scattering and diffraction from

the rear of the finite guide. Comparing the imaginary parts of the
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complex natural resonances of the two results, it appears that at

frequencies below cutoff, the effect of rim scattering is strongest as

the inclusion of rear diffraction in the model of Equation (260) did not

alter the pole locations much.

When we examine the denominator of each component in the

polarization scattering matrix (Equations 226, 227, 228 and 229), we

note that all contain the factor 1-fn 2. The same denominator factor is

found in the coefficients which define the waveguide modes coupled into

the guide and also appears in the radiation coupling coefficients for

waveguide modes. We postulate therefore that the characteristic

equation for the open circular waveguide is

1 - fn2 = (1+fn)( 1-fn) = 0 (261)

The factored form of Equation (261) is interesting in that it appears to

define even and odd complex natural resonances for the structure. For

axial incidence, the infinite summations in the components of the

scattering matrix reduce to the n=1 term and for axial incidence the

complex natural resonances excited are given by

(l+fl)(1-fl) = 0 , (262)

where

fj L+(k) . (263)

2ka M+(k)
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Asymptotic forms for the factorization functions (L+, M+) have been

given by Chuang et al. [11] as (e-iWtconvention)

L+(k) eiW/ 4  1 - R + R2 1
2 47rk e - i n / 4  8-oka e - i i / 2

(264)

and

(k ei /4  1 - + R@2

Mkk 2 rk-a e-i/ 4  8ka e-i/7

(265)

where

S (-i)m ei2mk , (266)
m= m3/2

and

LO

R' = (i)m ei2 m ka  (267)
m=1 m3/2

Thus the complex natural resonances are defined by

1 [8nka - 4/-a ei w/4 R- 1R2 1 = 0 (268)

75L 8ika - 4-a ei'/ 4 R' - iR' 2

As noted by Chuang et al. [11], the infinite summations R and R'

converge relatively rapidly except when ka= 31/4 and a few terms are

sufficient to represent the series. However, we seek those complex

values of ka which satisfy Equation (268) and each terms in R and R'

adds additional zeros. This obviously complicates any search procedure.
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A Cauchy integration program developed by Singaraju et al. [51]

has been used to search for the zeros of Equation (268). The zeros of

1-f1=0 and 1+f1=0 are searched separately and they are plotted in the

complex ka-plane in Figure 79 and Figure 80 respectively. Four terms

each are used in the summations of R and R'. The solid line is drawn to

show the cusp-like trend of the distribution of the zeros. Furthermore,

the cusps have a period of v and suggests a simple relationship of the

wavelength with the diameter. As is expected of an asymptotic

expression, the locus of the zeros becomes more regular as the frequency

increases. Due to the complexity of the characteristic equation, any

solution becomes a formidable task.

The solution to Equation (268) has been attempted with different

number of terms in R and R'. A particular zero appears consistently at

around -0.35+jl.1. This is similar to the pole (set R of Table 5)

obtained via the rational function model of the below cutoff region of

the frequency spectrum. It is also similar to the dominant pole of the

wire loop.

Due to the approximate nature of the equations and the complexity

of the problem, the solutions are only approximate. However, it is

encouraging to note that there is good agreement between the three

methods.

The question of a characteristic equation and attendant complex

natural resonances for the open circular waveguide is not considered

settled. The topic, particularly as reexamination of the Wiener-Hopf

solution, is beyond the scope of this report. Exact characteristic
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equations are known for only two scatterer geometries, spherical and

cylindrical. The vector wave equation is also separable for the

circular disc and some effort toward extraction of the characteristic

equation has been made, Mithouard and Hodge [45]. It would now appear

that the open circular waveguide can possibly also be treated.
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SECTION 6

SUMMARY FOR PART II

Backscatter calculations for the low resonance region of loaded

cavity structures (open, loaded circular waveguides) have been obtained

by combining exact (Wiener-Hopf) solutions at low frequencies with

asymptotic estimates (GTD) at high frequencies. The spectral solutions

were joined using rational function approximations to span the critical

spectral region of the first propagating mode for the guide. A proper

fit for the rational function model was obtained by satisfying both

physical constraints and moments of the corresponding time domain

estimates. The basic approach is not new, one of the earliest

utilizations of the time domain concept by Kennaugh and Moffatt [43] was

to combine Rayleigh and physical optics estimates to predict resonance

region scattering. In this case, however, exact computations were used

at low frequencies and the proper spectral region (below the cutoff

frequency of the first propagating mode) was known a priori.

In the time domain the asymptotic estimates could not be utilized

directly, the predicted time waveforms being noncausal. It has been

demonstrated however that the noncausality of these solutions can be
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removed qithout altering the correctness of the asymptotic model in its

proper spectral range.

For an open, unloaded circular waveguide, asymptotic estimates

provice a reasonable estimate of backscattering for guide diameters

greater than 1.0 wavelength and an excellent estimate for guide

diameters greater than 2.0 wavelengths, Johnson and Moffatt [12]. It

has been demonstrated using physical constraints and moment conditions

on the time donain models that when the guide is substantually loaded,

i.e., a short or multiple blade load geometry, there the asymptotic

estimates can be extended to lower frequencies (guide diameters of 0.7

to 0.75 wavelengths). The reason for this is that the rim scattering

(unloaded waveguide) becomes relatively unimportant compared to the

contrioutions from the load. The rim still must be accounted for

however in the vicinity of the cutoff frequency for the first (TE1 1 )

propagating mode.

While the extension has not been made, the manipulations of

spectral limited analytical solutions for the case of a open loaded

circular waveguide have clearly demonstrated that in the low resonance

region much more realistic jet engine geometries could be handled. The

approach would be via moment method calculations of the structure at low

frequencies which oill not support propagating modes within the unloaded

cavity and asymptotic estimates of the loaded cavity when only a few

propagating modes are possible. These solutions could then he joined

using rational function estimates to span the low resonance region of

the aperture of the cavity. As in the cases demonstrated here, both
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physical constraints and moment conditions can be applied to correct the

corresponding time waveforms.

The dominant complex natural resonances of finite and open circular

waveguides have been extracted using both time and frequency domain

methods. An argument was given illustrating that the complex natural

resonance string associated with the rim scattering (leading) is

identical for all finite circular waveguides and is independent of rear

terminations and of internal loading. This was demonstrated for the

extracted poles. Therefore we can conclude that target recognition

procedures based on the complex natural resonances of the aperture of

the jet engine intake (see Appendix 0) would be independent of the jet

engine itself and would not require interrogating signals with spectral

content above the first cutoff frequency for the intake.

A postulated characteristic equation for the open circular

waveguide has been suggested based on the exact Wiener-Hopf solution.

First estimates of the complex natural resonances corresponding to this

characteristic equation have been obtained using asymptotic

approximations for the Wiener-Hopf factorization functions. While some

rough agreement with the poles extracted via time and frequency domain

methods has been obtained, additional analysis is needed to properly

interpret the complex natural resonances predicted by the proposed

characteristic equation.
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CONCLUSIONS AND RECOMMENDATIONS

The following conclusions can be drawn from the research detailed

in this report; these are grouped below into catagories 1 and 2

corresponding to parts 1 and 2 of the report, respectively.

(1a) The dominant scattering mechanisms have been identified and

isolated in the frequency domain analysis of the problem of

electromagnetic fields backscattered from the simplified inlet

geometries of Figures 1 and 2. Junctions pertaining to these various

dominant scattering mechanisms are defined, and the scattering from

these junctions is described in terms of appropriate "generalized"

scattering matrices. The elements of the generalized scattering

matrices alluded to above are obtained in a relatively simple form via

the uniform GTD (or UTD) ray analysis together with it's modifications

which are required along ray caustics. The multiple scattering method

(MSM) has been employed, in a self consistent fashion, to sum all the

interactions between the scattering junctions. As noted above, the

scattering junctions are characterized by the generalized scattering

matrices whose elements are obtained via the ray method (see (1b))

together with it's modifications at ray caustics. The accuracy of the

elements of the generalized scattering matrices has been established by

comparison with the exact (but far more complicated) Wiener Hopf

solutiorn for these elements, and also by comparison with available
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measurements in some cases. Consequently, it is concluded that the

solution to the complete problem of the electromagnetic backscatter from

the simple inlet model of Figures 1 and 2, which can be "built-up" from

the use of the generalized scattering matrices via the self consistent

MSM based procedure, is also expected to be reasonably accurate.

(Ib) The modulation of the backscattered electric field due to the

blade rotation is also predicted for the simple inlet model in Figures 1

and 2. It is concluded, that this modulation can be significant in some

cases for the simple inlet model chosen in the present work.

(2a) The diagnostic and interpretation potential of the canonical

(impulse, step, and ramp) response waveforms of cavity and loaded

cavity-type structures have been vividly demonstrated. For a finite

circular waveguide for example all of the scattering mechanisms have

been recognized and in many cases resolved in the time domain.

2(b) It has been conclusively demonstrated that scattering data for

cavity structures in the resonance region (cavity circumference of the

wavelength) of the cavity aperture can be obtained by properly combining

low frequency calculations and high frequency asymptotic estimates. The

approach is particularly attractive because it provides a means to

combine low frequency data where the only fields in the cavity are

evanescent modes with solutions provided for example by the geometrical

theory of diffraction. Computations at the low frequency end are

inevitably simpler if propagating modes in the structure need not he

considered.
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2(c) It has been shown that the non-causal response waveforms

predicted by certain asymptotic results for finite and semi-infinite

guides can be corrected without altering their correct form at high

frequencies.

?(d) A definite procedure using rational functions to join the low

frequency calculations and high frequency asymptotic results was

established for the case of loaded and unloaded semi-infinite circular

waveguides. The rational functions are simple in form and both physical

constraints and moment conditions on the time response waveforms have

been given to assure the relative correctness of the rational

functions.

2(e) A form for the characteristic equation for a semi-infinite

circular waveguide has been postulated, and some initial estimates of

the complex natural resonances made based on asymptotic formulas. The

postulated characteristic equation came from an examination of the

elements of the polarization scattering matrix for the exact Wiener-Hopf

solution, and also from an examination of the coefficients for the modes

coupled into the guide.

The following recommendations are made for future studies on the

subject of electromagnetic backscatter from inlet geometries.

1(a) It is recommended that the present frequency domain analysis

be extended to treat non-circular inlet rim shapes.

1(b) It would be worth analyzing the effect of a hub structure in

front of the blades in the simple inlet geometries of Figures I and 2.

It would also be worthwhile to consider more realistic blade structures
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(e~g., those which include a pitch on the blades) in the inlet

geometries of Figures 1 and 2.

1(c) It is recommended that the present analysis be extended to

treat higher frequencies where a large number of modes can be excited

within the inlet duct. Alternative representations for the high

frequency fields within the duct regions should be sought because the

use of a large number of modes, or a large number of equivalent rays,

would lead to a very cumbersome solution. Also, it is recommended that

the effect of tapers or transitions in the inlet duct shapes be studied

since actual jet inlets do not maintain a constant cross-section within

the duct regions.

2(a) It is recommended that the rational function procedure for

obtaining resonance region scattering data be extended to finite cavity

structures more closely modelling actual jet engine configurations. In

this case one would be combining low frequency electric field integral

equation calculations with high frequency asymptotic estimates.

2(b) The initial research on the characteristic equation and the

related complex natural resonances of a semi-infinite circular waveguide

should be completed.

All of these recommended problems in 1(a)-2(b) are very difficult

and challenging, but are certainly important.
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APPENDIX A

SUMMARY OF CIRCULAR WAVEGUIDE MODES

AND CUTOFF ka

NO. N M ka NO. N M ka
1 TE 1 1 1.8412 41 TM 8 1 12.2251
2 TM 0 1 2.4049 42 TM 5 2 12.3386
3 TE 2 1 3.0542 43 TE 4 3 12.6819
4 TM 1 1 3.8318 44 TE 11 1 12.8264
5 TE 0 1 3.8318 45 TE 7 2 12.9324
6 TE 3 1 4.2012 46 TM 3 3 13.0152
7 TM 2 1 5.1357 47 TE 2 4 13.1704
8 TE 4 1 5.3175 48 TM 1 4 13.3237
9 TE 1 2 5.3315 49 TE 0 4 13.3237

10 TM 0 2 5.5201 50 1M 9 1 13.3543
11 TM 3 1 6.3802 51 TM 6 2 13.5893
12 TE 5 1 6.4155 52 TE 12 1 13.8787
13 TE 2 2 6.7062 53 TE 5 3 13.9872
14 TM 1 2 7.0156 54 TE 8 2 14.1155
15 TE 0 2 7.0156 55 TM 4 3 14.3726
16 TE 6 1 7.5013 56 TM 10 1 14.4755
17 TM 4 1 7.5884 57 TE 3 4 14.5859
18 TE 3 2 8.0153 58 TM 2 4 14.7960
19 TM 2 2 8.4173 59 TM 7 2 14.8213
20 TE 1 3 8.5363 60 TE 1 5 14.8636
21 TE 7 1 8.5777 61 TE 13 1 14.9283
22 TM 0 3 8.6537 62 TM 0 5 14.9309
23 TM 5 1 8.7715 63 TE 6 3 15.2682
24 TE 4 2 9.2824 64 TE 9 2 15.2867
25 TE 8 1 9.6474 65 TM 11 1 15.5899
26 TM 3 2 9.7610 66 TM 5 3 15.7002
27 TM 6 1 9.9361 67 TE 4 4 15.9641
28 TE 2 3 9.9695 68 TE 14 1 15.9753
29 TM 1 3 10.1735 69 TM 8 2 16.0378
30 TE 0 3 10.1735 70 TM 3 4 16.2235
31 TE 5 2 10.5199 71 TE 2 5 16.3475
32 TE 9 1 10.7114 72 TE 10 2 16.4479
33 TM 4 2 11.0647 73 TM 1 5 16.4706
34 TM 1 1 11.0864 74 TE 0 5 16.4706
35 TE 3 3 11.3459 75 TE 7 3 16.5294
36 TM 2 3 11.6199 76 TM 12 1 16.6983
37 TE 1 4 11.7060 77 TM 6 3 17.0038
38 TE 6 2 11.7349 78 TE 15 1 17.0202
39 TE 10 1 11.7708 79 TM 9 2 17.2412
40 TM 0 4 11.7915 80 TE 5 4 17.3129
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NO. N M ka NO. N M ka
81 TE 11 2 17.6003 121 TM 0 7 21.2116
82 TM 4 4 17.6160 122 TE 8 4 21.2291
83 TE 8 3 17.7740 123 TE 11 3 21.4309
84 TE 3 5 17.7888 124 TM 7 4 21.6415
85 TM 13 1 17.8014 125 TE 6 5 21.9317
86 TM 2 5 17.9598 126 TM 13 2 21.9563
87 TE 1 6 18.0155 127 TM 10 3 22.0470
88 TE 16 1 18.0632 128 TE 15 2 22.1422
89 TM 0 6 18.0711 129 TM 17 1 22.1725
90 TM 7 3 18.2876 130 TM 5 5 22.2178
91 TM 10 2 18.4335 131 TE 20 1 22.2190
92 TE 6 4 18.6375 132 TE 4 6 22.4010
93 TE 12 2 18.7451 133 TE 9 4 22.5014
94 TM 14 1 18.9000 134 TM 3 6 22.5827
95 TM 5 4 18.9801 135 TE 12 3 22.6293
96 TE 9 3 19.0046 136 TE 2 7 22.6716
97 TE 17 1 19.1044 137 TM 1 7 22.7601
98 TE 4 , 5 19.1960 138 TE 0 7 22.7601
99 TM 3 5 19.4094 139 TM 8 4 22.9452
100 TE 2 6 19.5129 140 TM 14 2 23.1158
101 TM 8 3 19.5545 141 TE 21 1 23.2548
102 TM 1 6 19.6159 142 TM 18 1 23.2568
103 TE 0 6 19.6159 143 TE 16 2 23.2643
104 TM 11 2 19.6160 144 TE 7 5 23.2681
105 TE 13 2 19.8832 145 TM 11 3 23.2759
106 TE 7 4 19.9419 146 TM 6 5 23.5861
107 TM 15 1 19.9944 147 TE 10 4 23.7607
108 TE 18 1 20.1440 148 TE 5 6 23.8036
109 TE 10 3 20.2230 149 TE 13 3 23.8194
110 TM 6 4 20.3208 150 TM 4 6 24.0190
111 TE 5 5 20.5755 151 TE 3 7 24.1449
112 TM 12 2 20.7899 152 TM 9 4 24.2339
113 TM 9 3 20.8071 153 TM 15 2 24.2692
114 TM 4 5 20.8269 154 TM 2 7 24.2701
115 TE 3 6 20.9725 155 TE 22 1 24.2893
116 TE 14 2 21.0154 156 TE 1 8 24.3113
117 TM 16 1 21.0852 157 TM 19 1 24.3383
118 TM 2 6 21.1170 158 TM 0 8 24.3525
119 TE 1 7 21.1644 159 TE 17 2 24.3819
120 TE 19 1 21.1822 160 TM 12 3 24.4949
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NO. N M ka NO. N M ka
161 TE 8 5 24.5872 201 TM 9 5 27.5838
162 TM 7 5 24.9349 202 TM 18 2 27.6979
163 TE 14 3 25.0020 203 TE 20 2 27.7121
164 TE 11 4 25.0085 204 TE 8 6 27.8893
165 TE 6 6 25.1839 205 TM 12 4 28.0267
166 TE 23 1 25.3228 206 TM 15 3 28.1024
167 TM 16 2 25.4170 207 TM 7 6 28.1912
168 TM 20 1 25.4172 208 TE 6 7 28.4098
169 TM 5 6 25.4304 209 TE 26 1 28.4180
170 TE 18 2 25.4956 210 TE 11 5 28.4609
171 TM 10 4 25.5095 211 TE 17 3 28.5114
172 TE 4 7 25.5898 212 TM 5 7 28.6266
173 TM 13 3 25.7051 213 TM 23 1 28.6402
174 TM 3 7 25.7482 214 TE 14 4 28.6943
175 TE 2 8 25.8260 215 TE 4 8 28.7678
176 TE 9 5 25.8913 216 TE 21 2 28.8156
177 TM 1 8 25.9037 217 TM 19 2 28.8317
178 TE 0 8 25.9037 218 TM 10 5 28.8874
179 TE 15 3 26.1778 219 TM 3 8 28.9084
180 TE 12 4 26.2460 220 TE 2 9 28.9777
181 TM 8 5 26.2668 221 TM 1 9 29.0468
182 TE 24 1 26.3555 222 TE 0 9 29.0468
183 TM 21 1 26.4937 223 TE 9 6 29.2186
184 TE 7 6 26.5450 224 TM 13 4 29.2706
185 TM 17 2 26.5598 225 TM 16 3 29.2909
186 TE 19 2 26.6055 226 TE 27 1 29.4481
187 TM 11 4 26.7733 227 TM 8 6 29.5457
188 TM 6 6 26.8202 228 TE 18 3 29.6701
189 TM 14 3 26.9074 229 TM 24 1 29.7105
190 TE 5 1 27.0103 230 TE 12 5 29.7290
191 TE 10 5 27.1820 231 TE 7 7 29.7908
192 TM 4 7 27.1991 232 TE 15 4 29.9066
193 TE 3 8 27.3101 233 TE 22 2 29.9161
194 TE 16 3 27.3474 234 TM 20 2 29.9616
195 TE 25 1 27.3871 235 TM 6 7 30.0337
196 TM 2 8 27.4206 236 TM 11 5 30.1791
197 TE 1 9 27.4571 237 TE 5 8 30.2029
198 TE 13 4 27.4743 238 TM 4 8 30.3710
199 TM 0 9 27.4935 239 TE 3 9 30.4703
200 TM 22 1 27.5680 240 TM 17 3 30.4733
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NO. N M ka NO. N M ka
241 TE 28 1 30.4774 281 TM 16 4 32.9537
242 TM 14 4 30.5060 282' TE 7 8 33.0152
243 TE 10 6 30.5345 283 TE 21 3 33.1192
244 TM 2 9 30.5692 284 TE 12 6 33.1315
245 TE 1 10 30.6019 285 TE 25 2 33.2023
246 TM 0 10 30.6346 286 TM 6 8 33.2330
247 TM 25 1 30.7790 287 TM 23 2 33.3302
248 TE 19 3 30.8241 288 TE 5 9 33.3854
249 TM 9 6 30.8854 289 TE 15 5 33.4785
250 TE 13 5 30.9874 290 TE 18 4 33.5039
251 TE 23 2 31.0140 291 TM 11 6 33.5264
252 TM 21 2 31.0878 292 TM 4 9 33.5371
253 TE 16 4 31.1119 293 TE 31 1 33.5616
254 TE 8 7 31.1553 294 TE 3 10 33.6270
255 TM 7 7 31.4228 295 TM 2 10 33.7165
256 TM 12 5 31.4600 296 TE 1 11 33.7462
257 TE 29 1 31.5062 297 TM 0 11 33.7758
258 TE 6 18 31.6179 298 TE 10 7 33.8420
259 TM 18 3 31.6501 299 TM 28 1 33.9749
260 TM 15 4 31.7334 300 TM 20 3 33.9887
261 TM 5 8 31.8117 301 TM 14 5 33.9932
262 TE 11 6 31.8384 302 TM 9 7 34.1544
263 TM 26 1 31.8459 303 TM 17 4 34.1673
264 TE 4 9 31.9385 304 TE 22 3 34.2608
265 TE 20 3 31.9737 305 TE 26 2 34.2930
266 TM 3 9 32.0649 306 TE 8 8 34.3966
267 TE 24 2 32.1093 307 TE 13 6 34.4146
268 TE 2 10 32.1273 308 TM 24 2 34.4468
269 TM 1 10 32.1897 309 TE 32 1 34.5884
270 TE 0 10 32.1897 310 TM 7 8 34.6371
271 TM 22 2 32.2106 311 TE 19 4 34.6915
272 TM 10 6 32.2119 312 TE 16 5 34.7125
273 TE 14 5 32.2370 313 TE 6 9 34.8134
274 TE 17 4 32.3109 314 TM 12 6 34.8300
275 TE 9 7 32.5052 315 TM 5 9 34.9888

i 276 TE 30 1 32.5341 316 TM 29 1 35.0373
277 TM 13 5 32.7311 317 TE 4 10 35.1n39
278 TM 8 7 32.7958 318 TM 21 3 35.1511
279 TM 19 3 32.8218 319 TE 11 7 35.1667
280 TM 27 1 32.9112 320 TM 3 10 35.2187
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APPENDIX B

INCLUSION OF ALL MULTIPLE INTERACTIONS

ACROSS THE APERTURE

As shown in Figure 16, the incident plane wave field, after double

diffraction, gives rise to a non-ray optical field E3 on the rim, which

was described by Eqs. (91) and (94).

_i _i _i
E3 = E3,1 + E3,2 • (A-I)

_i _i N I

where E3,1  and E3 ,2 are the two ray optical components given in

Eqs. (95)-(96). Now, the triply diffracted ray which traverses the
_I _bs4

aperture to produce E4  (and therefore E ) lies again on the
i

reflection boundary of the doubly diffracted ray (which produces 13 and

therefore 1'S3 ). Accordingly, one can decompose the non-ray optical

F4 into four ray optical components as follows.

i i1 12 ii i2
t4  4 , 1  

+ 4,1 + F4 , 2  + 4 , 2  (A-2)

_iT1 i
due to E3,1  due to F3 , 2
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i -i 2
Here, !4,1 and E4,1 are the two ray optical fields scattered hy E3, 1;

iiJ2 ili2
p4 ,2 and E4,2 are the two ray optical fields scattered by T3,2.
Proceeding the same as in Eqs. (95)-(96), one can write -r4, 'I _4,1

as2 and E4,2

as J1 _i i -j2ka
E*D * e (A-3)4,1 E3,1 ap+ 57

J r r -j2ka

4,1 7 3,1 (-1)rPI
paj0 2 j

(-1 E P3 04 e (A-6)

wherr

Di1 -ej (A-7)

E E 1 +E 2 +E 3 4(A8
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where

i i2

r 12
4,1 4,1 4,1

i e -j2ka (A-11)

I 2

Ei : (-) 2 i2A-2

3,2 4,1

4,3 4,2

-E32(-1) •i

Proceeding the same, one is able to obtain

E rn-I m (A-13)i_- m>3
m n=1 m,n

where

_i _i i -j2ka
E rn i Em Ds • j e

= m. I  a--Ei ei( 2 kaw)]

E A 
(A-14)

and
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E m 1 E m1n (-1) /- . n-i e-j2ka

n-1 jB ,2 n'r- * (A-15)

r- 1,n-1 F

j with

{~- A e(2ka-'r)

B =-1 e3j2ka (A-17)

From Eqs. (107)-(108), one can try to sum up Em in terms of E2  to
m=2

obtain a multiplication factor 1,then rbsm is just the product of
m=2

VbS2 and f.Now,

M- i -i
~E I~ E

m=2 m m2ni m,n

- + +A +r +r
hm=3 n=2 m,n M=3 mn-i 2

-jB. - I 1 +A +
m=2 n=1 inn [n+ M=2 in 2

(A-18)

Thus,
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(1-A) "JB (A-19)
m=2 m m=2 n=1 m , n 2

Proceeding the same for K times, one can obtain

K

[1-A (jB) .J] m= E

K rn-1i K K: (B) x r • n + I (jB) •E

m=2 n=1 m,n W 1=1 2

(A-20)

However, tBI<1. In the limiting case where K + -, the first term on

the right hand side of Eq. (A-20) can be neglected. Thus, Eq. (A-20) is

reduced to

E i E f (A-21)
m=2 m 2

where

f = C . (A-22)

and

K
C = 1 (=B) .J _, K + - . (A-23)

From Eqs. (107)-(108), one can write
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rEs (6=0) E's (6=0) *f .(A-24)

m=2

Combining Eqs. (87) and (A-24), one has

~ ~bm(0=0) rbl(e=) * {bu 2.f} (A-25)
ni=l
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APPENDIX C

TO DETERMINE [S2 1] FROM [S12] USING

THE RECIPROCITY THEOREM

As shown in Figure 26, one wants to find the coupled fields inside

the waveguide due to an electric source -Te in the far field. Let the

electric and magnetic test sources JS, MS be located at z=-L, then,

+ _+
J S = n x H na t z( 

- 6

MS = En x n

+ _+

En and Hn represent the incident modal fields in the waveguide, and

+ +_

En =cn n + ezn) eiI~nz

at z = -L (A-27)

H= chn + h ) ej BnzHn  cn  n z

where en (or hn) is the transverse electric (or magnetic) field, and

izn (or Wzn) is the longitudinal electric (or magnetic) field. Cn can
+ +

be either Anm or Bnm to denote the TE or TM case. The test sources
._r _

is and IRS  will generate E , and H in the far field which are

-eassumed to be known (see Eqs. (131)-(133)). Now, let -Je generate E

and Tr internal and external to the guide. From reciprocity, one

obtains
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f f re' XT x d S fI~ f WJ ' d V

(A-28)

However,

Se

T0 (A-29)
on S o

Also, (E , F) and (E' , IT) satisfy the radiation conditions on ~

Therefore, Eq. (A-28) can be reduced to

ff *R I~ ds'+f 7s dS 'Fe *,(p (-0
so so

if "5e = -Pe -6(IW-fpI), a point source in the far field. Fkp is the

position vector from the reference point to point P. Also, we let

e -ap

p p p zp

(A-31)
-e - - jz
H Z EA-(-h -h e P'

P p ZP

in the waveguide region at z=-L. Again, A-p can be either A-n or R n

to denote the TE or TM case. Substituting Eqs. (A-26)-(A-27), and

(A-31) into (A-30), one obtains

271



-ff {[E A- (-i gzp)] x Rn (WnF41 +e} Z

+ Bnnn)Z e dS

+11 JI c+ (in i5 zn)) x [1: A- (-Wp + zp)I

so np p d

Te -E r I~p)(A-32)

Using the orthogonality property of the waveguide modes, one obtains

P- *r*Rp -2 cnA- ff "i x~n ZdS .(A-33)

e n S

Therefore,

rP
A - Pe .E(p (A-34)

n 2c+ f f-ixW dSn n n

In order to produce an incident field F O = + E#at the opening

of the waveguide, one can let

Thus,

A- (e~+ .E') E r(Rp) *Rp eR 4v (A-36)
n 2c~nUn Xn* d

272



Replacing A- with A- or R- , and c+ with An+ or 9n + n ban
n nm nmn m n on has

A- (eEe + E0).ETE (R).Rp . ekP. 4w *(A-37)

nm2 A~m ffe-n xh'n * i dS j W1
nnn

Bn- (OE'e+ E).ET (-k*p) . Rp OE eR TM 4w *(A-38)

2 B+ff T x hn *dS j Ijj
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APPENDIX D

RADAR RECOGNITION OF CAVITY STRUCTURES

It was demonstrated in Part II of this report that a set of complex

natural resonances could be associated with the rim or aperture of the

cavity. These resonances are independent of any loading (engine) or

external termination. The rim or aperture scattering is most dominant

at frequencies just below the cutoff frequency of the first propagating

mode. The on-axis radar cross section of the rim (for a circular

waveguide) just below cutoff is some 9db greater than its nominal value

at higher frequencies and is roughly equal to the average cross sections

obtained when a short circuit terminates the guide. A target

recognition algorithm based on the most dominant aperture natural

resonance (oscillatory part - 0.35 guide diameters in wavelengths) would

not require penetration of the cavity. If the spectrum of the interro-

gating radar signal lies below the cutoff frequency for the first

propagating mode for the cavity then direct exploitation of the two

(possibly) complex natural resonances excited does not appear too

promising. The amplitude only approach using synthetically generated

matched-filter response waveforms, Moffatt, Rhoads [48) would be one
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possibility. Another possibility which should be tested is the low

frequency classification scheme discussed hy Ksienski and Lin in

Moffatt, Young, Ksienski, Ltin and Rhoads [49].

If somewhat more sophisticated interrogating signals are considered

then two procedures can be suggested; prediction-correlation Chuang,

Moffatt [38] and the K-pulse, Kennaugh [44] both of which would be

based on the aperture complex natural resonances of the cavity or a

combination of these and the load resonances (see below). The K-pulse

seems particularly attractive in that very distinctive waveforms should

result. Briefly, the K-pulse relates a single excitation invariant

interrogating waveform to a unique family of excitation-dependent

(aspect and polarization) response waveforms. The integrating K-pulse

spectrum has, as zeros, the complex natural resonances of the scatterer

and is defined to elicit a response waveform of minimum duration,

Kennaugh [44].

Consider the solution for the backscattered field from a loaded

open circular waveguide using the generalized scattering matrix

technique (GSMT), Johnson, Moffatt [12]. The scattered field is given

by

ubs = S1 + S12 [(Tb2SbT2b).I - S22-I1 S21  u ,

(A-39)

where S11, S12, S21 and S22 are matrices representing respectively the

rim scattering, radiation characteristics of the rim, coupling

characteristics of the rim and reflection of waveguide modes at the open
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(rim) end of the guide and ui is the incident field. T2b and Tb2 are

diagonal matrices representing respectively transmission down the guide

(rim to load) and transmission back from the load (load to rim). Sb is

a matrix for the reflection of waveguide modes from the load. The

matrices S11 , S12, S21 and S22 have been found using the exact

Wiener-Hopf solution, Johnson, Moffatt [12]. Based on these matrices,

Part I of this report suggests the characteristic equation

[1 - fn2] = 1 fn][1 - fn] = 0. (A-40)

for the aperture or rim complex natural resonances. The point is that

each element in the matrices S11, S12, S21 and S22 has (1 - fn2 ) as a

multiplication factor in the denominator. If we write these matrices

as

Sstj (A-41)f =[I - fn2]

then

ubS -S(T 2 S b T 42)- Si[j-f2] [l.f2]2 [1-f2]
(A-42)

or

ubS [I-f2]2  {n[f 2 ] b12 b 2b) [1-f2] I u'"
(A-43)
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Equations (A-42) and (A-43) illustrate on important point which it is

felt will be true for all cavity structures. The K-pulse spectrum

desired is the square of the aperture pole spectrum as zeros. Such a

spectrum still does not contain the poles of the load, i.e., the poles

affected by (Tb2SbT2b)-1. A K-pulse which included these would

apparently be quite long. An excitation with the square of the aperture

pole spectrum as zeros however would result in response waveforms very

highly characteristics of the load. From Equation (A-42) it is clear

that a K-pulse with the zeros of 1-fn 2 alone would not eliminate ringing

in the response due to the rim.

The discussion at this time is somewhat academic since, as

discussed in Section 5, of Part II, we have not yet been completely

successful in extracting the zeros of 1-fn 2. However, development of

the K-pulse concept is in its infancy. The K-pulse waveforms for a few

representative scatterers including the sphere, circular disk and

circular loop are presently being studied on other programs*. We

envision however that applications of the K-pulse concept will grow in

much the same way as those of the impulse response concept, Kennaugh,

Cosgriff [42] and complex natural resonances for target

identification, Moffatt, Mains [47].

*Contract No. 710816, etc.
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